File size: 6,742 Bytes
8ff45d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import logging
from pathlib import Path
from typing import Union, Optional
import pandas as pd

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)

class DataPreprocessor:
    """A class to handle data preprocessing operations for different file formats."""
    
    @staticmethod
    def _preprocess_dataframe(df: pd.DataFrame) -> pd.DataFrame:
        """

        Applies standard preprocessing steps to a DataFrame.

        

        Args:

            df (pd.DataFrame): Input DataFrame to preprocess

            

        Returns:

            pd.DataFrame: Preprocessed DataFrame

        """
        try:
            # Convert text columns to lowercase for standardization
            df = df.map(lambda x: x.lower() if isinstance(x, str) else x)
            
            # Drop columns that are fully null
            df = df.dropna(axis=1, how='all')
            
            # Fill remaining NaN values with empty strings
            df = df.fillna('')
            
            # Remove duplicate rows
            df = df.drop_duplicates()
            
            return df
            
        except Exception as e:
            logger.error(f"Error during DataFrame preprocessing: {str(e)}")
            raise

    @classmethod
    def preprocess_msd(cls, 

                      file_path: Union[str, Path], 

                      output_path: Union[str, Path],

                      sheet_name: Optional[Union[str, int]] = 0) -> pd.DataFrame:
        """

        Preprocesses an MSD Excel file and saves the result.

        

        Args:

            file_path: Path to the Excel file

            output_path: Directory path for the output file

            sheet_name: Sheet name or index to load (default: 0)

            

        Returns:

            pd.DataFrame: Preprocessed DataFrame

            

        Raises:

            FileNotFoundError: If input file doesn't exist

            PermissionError: If output directory is not writable

        """
        try:
            # Convert to Path objects
            file_path = Path(file_path)
            output_path = Path(output_path)
            
            # Validate input file
            if not file_path.exists():
                raise FileNotFoundError(f"Input file not found: {file_path}")
            
            # Ensure output directory exists
            output_path.mkdir(parents=True, exist_ok=True)
            
            logger.info(f"Processing MSD file: {file_path}")
            df = pd.read_excel(file_path, sheet_name=sheet_name)
            
            # Apply preprocessing
            df = cls._preprocess_dataframe(df)
            
            # Save processed file
            output_file = output_path / "msd_processed.csv"
            df.to_csv(output_file, index=False)
            logger.info(f"Saved processed file to: {output_file}")
            
            return df
            
        except Exception as e:
            logger.error(f"Error processing MSD file: {str(e)}")
            raise

    @classmethod
    def preprocess_cbip(cls,

                       input_dir: Union[str, Path],

                       output_dir: Union[str, Path]) -> None:
        """

        Preprocesses all CSV files in the CBIP directory.

        

        Args:

            input_dir: Directory containing input CSV files

            output_dir: Directory for output files

            

        Raises:

            FileNotFoundError: If input directory doesn't exist

            PermissionError: If output directory is not writable

        """
        try:
            # Convert to Path objects
            input_dir = Path(input_dir)
            output_dir = Path(output_dir)
            
            # Validate input directory
            if not input_dir.exists():
                raise FileNotFoundError(f"Input directory not found: {input_dir}")
            
            # Ensure output directory exists
            output_dir.mkdir(parents=True, exist_ok=True)
            
            # Process all CSV files
            csv_files = list(input_dir.rglob("*.csv"))
            if not csv_files:
                logger.warning(f"No CSV files found in: {input_dir}")
                return
            
            for file_path in csv_files:
                try:
                    logger.info(f"Processing CBIP file: {file_path}")
                    
                    # Read CSV file
                    df = pd.read_csv(
                        file_path,
                        delimiter=';',
                        quotechar='"',
                        skip_blank_lines=True
                    )
                    
                    # Apply preprocessing
                    df = cls._preprocess_dataframe(df)
                    
                    # Save processed file
                    output_file = output_dir / file_path.name
                    df.to_csv(output_file, index=False)
                    logger.info(f"Saved processed file to: {output_file}")
                    
                except Exception as e:
                    logger.error(f"Error processing {file_path}: {str(e)}")
                    continue
                    
        except Exception as e:
            logger.error(f"Error processing CBIP directory: {str(e)}")
            raise

def main():
    """Main execution function."""
    try:
        import os
        import argparse
        from pathlib import Path
        
        # Create processed_data directory in current working directory
        output_base = Path.cwd() / "processed_data"
        msd_output = output_base / "msd"
        cbip_output = output_base / "cbip"
        
        parser = argparse.ArgumentParser(description='Process MSD and CBIP data files.')
        parser.add_argument('--msd-input', required=True, help='Path to MSD Excel file')
        parser.add_argument('--cbip-input', required=True, help='Input directory containing CBIP CSV files')
        
        args = parser.parse_args()
        
        preprocessor = DataPreprocessor()
        
        # Process MSD file
        preprocessor.preprocess_msd(
            args.msd_input,
            msd_output
        )
        
        # Process CBIP directory
        preprocessor.preprocess_cbip(
            args.cbip_input,
            cbip_output
        )
        
    except Exception as e:
        logger.error(f"Main execution failed: {str(e)}")
        raise

if __name__ == "__main__":
    main()