STRIKE / app.py
sharktide's picture
Update app.py
a618e7a verified
raw
history blame
32.3 kB
import gradio as gr
from fastapi import FastAPI
from fastapi.responses import JSONResponse
from fastapi.middleware.cors import CORSMiddleware
import tensorflow as tf
import pandas as pd
import numpy as np
import joblib
from load import *
from helper import *
from matplotlib import pyplot as plt
def predict_fire(temp, temp_unit, humidity, wind, wind_unit, veg, elev, elev_unit, use_trust):
input_data = {
"temperature": convert_temperature(temp, temp_unit),
"humidity": humidity,
"wind_speed": convert_wind_speed(wind, wind_unit),
"vegetation_index": veg,
"elevation": convert_elevation(elev, elev_unit)
}
input_df = pd.DataFrame([input_data])
base_prob = FireNet.predict(input_df)[0][0]
if use_trust:
trust_score = FireTrustNet.predict(FireScaler.transform(input_df))[0][0]
final = np.clip(base_prob * trust_score, 0, 1)
else:
final = base_prob
if final > 0.49:
verdict = "🔥 FIRE LIKELY"
elif final > 0.43 and final < 0.50:
verdict = "⚠️ Fire Possible"
else:
verdict = "🛡️ Fire Unlikely"
return f"{verdict} ({final:.2f})"
def predict_flood(rainfall_val, rainfall_unit, water_level_val, elevation_val, elev_unit,
slope_val, distance_val, distance_unit, use_trustnet):
# Unit conversion
rainfall = convert_rainfall(rainfall_val, rainfall_unit)
elevation = convert_elevation(elevation_val, elev_unit)
distance = convert_distance(distance_val, distance_unit)
# Construct input for FloodNet
base_df = pd.DataFrame([{
"Rainfall": rainfall,
"Water Level": water_level_val,
"Elevation": elevation,
"Slope": slope_val,
"Distance from River": distance
}])
base_prob = FloodNet.predict(base_df)[0][0]
if use_trustnet:
trust_df = pd.DataFrame([{
"rainfall": rainfall,
"water_level": water_level_val,
"elevation": elevation,
"slope": slope_val,
"distance_from_river": distance
}])
trust_score = FloodTrustNet.predict(FloodScaler.transform(trust_df))[0][0]
final = np.clip(base_prob * trust_score, 0, 1)
else:
final = base_prob
if final > 0.49:
verdict = "🏞️ FV-FLOOD LIKELY"
elif final > 0.43 and final < 0.50:
verdict = "⚠️ FV-Flood Possible"
else:
verdict = "🛡️ FV-Flood Unlikely"
return f"{verdict} ({final:.2f})"
def predict_pluvial_flood(rain, imp, drain, urban, conv, use_trust, rainfall_unit):
print(rainfall_unit)
rain = convert_rainfall_intensity(rain, rainfall_unit)
print(rain)
input_data = {
"rainfall_intensity": rain,
"impervious_ratio": imp,
"drainage_density": drain,
"urbanization_index": urban,
"convergence_index": conv
}
input_df = pd.DataFrame([input_data])
base_prob = PV_FloodNet.predict(input_df)[0][0]
if use_trust:
trust_score = PV_FloodTrustNet.predict(PV_FloodScaler.transform(input_df))[0][0]
final = np.clip(base_prob * trust_score, 0, 1)
else:
final = base_prob
if final > 0.52:
verdict = "🌧️ PV-FLOOD LIKELY"
elif 0.45 < final <= 0.52:
verdict = "⚠️ PV-Flood Possible"
else:
verdict = "🛡️ PV-Flood Unlikely"
return f"{verdict} ({final:.2f})"
def predict_flash_flood(rainfall, slope, drainage, saturation, convergence, use_trust):
input_data = {
"rainfall_intensity": rainfall,
"slope": slope,
"drainage_density": drainage,
"soil_saturation": saturation,
"convergence_index": convergence
}
input_df = pd.DataFrame([input_data])
base_pred = FlashFloodNet.predict(input_df)[0][0]
if use_trust:
trust_score = FlashFloodTrustNet.predict(FlashFloodScaler.transform(input_df))[0][0]
adjusted = np.clip(base_pred * trust_score, 0, 1)
else:
adjusted = base_pred
if adjusted > 0.55:
return f"🌩️ FLASH FLOOD LIKELY ({adjusted:.2f})"
elif 0.40 < adjusted <= 0.55:
return f"⚠️ Flash Flood Possible ({adjusted:.2f})"
else:
return f"🛡️ Flash Flood Unlikely ({adjusted:.2f})"
def predict_quake(dotM0, sdr, coulomb, afd, fsr, use_trust):
dotM0 = dotM0 * 1e16
input_data = {
"seismic_moment_rate": dotM0,
"surface_displacement_rate": sdr,
"coulomb_stress_change": coulomb,
"average_focal_depth": afd,
"fault_slip_rate": fsr
}
input_df = pd.DataFrame([input_data])
base_pred = QuakeNet.predict(input_df)[0][0]
if use_trust:
trust_score = QuakeTrustNet.predict(QuakeTrustScaler.transform(input_df))[0][0]
adjusted = np.clip(base_pred * trust_score, 0, 1)
else:
adjusted = base_pred
if adjusted > 0.55:
return f"🌎 EARTHQUAKE LIKELY ({adjusted:.2f})"
elif 0.40 < adjusted <= 0.55:
return f"⚠️ Earthquake Possible ({adjusted:.2f})"
else:
return f"🛡️ Earthquake Unlikely ({adjusted:.2f})"
def predict_hurricane(sst, ohc, mlh, vws, pv, sstu, use_trust):
sst = convert_temp_c(value=sst, unit=sstu)
input_data = {
"sea_surface_temperature": sst,
"ocean_heat_content": ohc,
"mid_level_humidity": mlh,
"vertical_wind_shear": vws,
"potential_vorticity": pv
}
input_df = pd.DataFrame([input_data])
base_pred = HurricaneNet.predict(input_df)[0][0]
if use_trust:
trust_score = HurricaneTrustNet.predict(HurricaneTrustScaler.transform(input_df))[0][0]
adjusted = np.clip(base_pred * trust_score, 0, 1)
else:
adjusted = base_pred
if adjusted > 0.55:
return f"🌀 HURRICANE LIKELY ({adjusted:.2f})"
elif 0.40 < adjusted <= 0.55:
return f"⚠️ Hurricane Possible ({adjusted:.2f})"
else:
return f"🛡️ Hurricane Unlikely ({adjusted:.2f})"
def generate_plot(axis, use_trustnet):
sweep_values = np.linspace({
"temperature": (280, 320),
"humidity": (0, 100),
"wind_speed": (0, 50),
"vegetation_index": (0.0, 2.0),
"elevation": (0, 3000)
}[axis][0], {
"temperature": (280, 320),
"humidity": (0, 100),
"wind_speed": (0, 50),
"vegetation_index": (0.0, 2.0),
"elevation": (0, 3000)
}[axis][1], 100)
base_input = {
"temperature": 300.0,
"humidity": 30.0,
"wind_speed": 10.0,
"vegetation_index": 1.0,
"elevation": 500.0
}
sweep_df = pd.DataFrame([{
**base_input,
axis: val
} for val in sweep_values])
raw_probs = FireNet.predict(sweep_df).flatten()
if use_trustnet:
trust_mods = FireTrustNet.predict(FireScaler.transform(sweep_df)).flatten()
adjusted_probs = np.clip(raw_probs * trust_mods, 0, 1)
else:
adjusted_probs = raw_probs
fig, ax = plt.subplots()
ax.plot(sweep_values, raw_probs, "--", color="gray", label="Base Model")
if use_trustnet:
ax.plot(sweep_values, adjusted_probs, color="orangered", label="With FireTrustNet")
ax.set_xlabel(axis.replace("_", " ").title())
ax.set_ylabel("Fire Probability")
ax.set_title(f"Fire Probability vs. {axis.replace('_', ' ').title()}")
ax.legend()
ax.grid(True)
return fig
def generate_flood_plot(axis, use_trustnet):
sweep_range = {
"rainfall": (0, 150),
"water_level": (0, 8000),
"elevation": (0, 20),
"slope": (0, 20),
"distance_from_river": (0, 2000)
}
values = np.linspace(*sweep_range[axis], 100)
base_example = {
"rainfall": 50.0,
"water_level": 3000.0,
"elevation": 5.0,
"slope": 2.0,
"distance_from_river": 100.0
}
# Build test cases by sweeping one input
inputs = pd.DataFrame([
{**base_example, axis: v} for v in values
])
# Predict with FloodNet
floodnet_inputs = inputs.rename(columns={
"rainfall": "Rainfall",
"water_level": "Water Level",
"elevation": "Elevation",
"slope": "Slope",
"distance_from_river": "Distance from River"
})
base_probs = FloodNet.predict(floodnet_inputs).flatten()
if use_trustnet:
trust_inputs = inputs.copy()
trust_scores = FloodTrustNet.predict(FloodScaler.transform(trust_inputs)).flatten()
modulated_probs = np.clip(base_probs * trust_scores, 0, 1)
else:
modulated_probs = base_probs
# Plotting
fig, ax = plt.subplots()
ax.plot(values, base_probs, "--", color="gray", label="FloodNet")
if use_trustnet:
ax.plot(values, modulated_probs, color="blue", label="With FloodTrustNet")
ax.set_xlabel(axis.replace("_", " ").title())
ax.set_ylabel("Flood Probability")
ax.set_title(f"Flood Probability vs. {axis.replace('_', ' ').title()}")
ax.grid(True)
ax.legend()
return fig
def generate_pluvial_plot(axis, use_trust):
sweep_range = {
"rainfall_intensity": (0, 160),
"impervious_ratio": (0.0, 1.0),
"drainage_density": (1.0, 5.0),
"urbanization_index": (0.0, 1.0),
"convergence_index": (0.0, 1.0)
}
sweep_values = np.linspace(*sweep_range[axis], 100)
base_input = {
"rainfall_intensity": 60.0,
"impervious_ratio": 0.5,
"drainage_density": 2.5,
"urbanization_index": 0.6,
"convergence_index": 0.5
}
sweep_df = pd.DataFrame([
{**base_input, axis: val} for val in sweep_values
])
base_probs = PV_FloodNet.predict(sweep_df).flatten()
if use_trust:
trust_mods = PV_FloodTrustNet.predict(PV_FloodScaler.transform(sweep_df)).flatten()
adjusted = np.clip(base_probs * trust_mods, 0, 1)
else:
adjusted = base_probs
fig, ax = plt.subplots()
ax.plot(sweep_values, base_probs, "--", color="gray", label="Base Model")
if use_trust:
ax.plot(sweep_values, adjusted, color="royalblue", label="With PV-FloodTrustNet")
ax.set_xlabel(axis.replace("_", " ").title())
ax.set_ylabel("PV Flood Probability")
ax.set_title(f"PV Flood Probability vs. {axis.replace('_', ' ').title()}")
ax.legend()
ax.grid(True)
return fig
def generate_flash_plot(axis, use_trust):
sweep_values = np.linspace(
{"rainfall_intensity": 0, "slope": 0, "drainage_density": 1.0,
"soil_saturation": 0.3, "convergence_index": 0.0}[axis],
{"rainfall_intensity": 150, "slope": 30, "drainage_density": 5.0,
"soil_saturation": 1.0, "convergence_index": 1.0}[axis],
100
)
base_input = {
"rainfall_intensity": 90,
"slope": 15,
"drainage_density": 3.0,
"soil_saturation": 0.7,
"convergence_index": 0.5
}
sweep_df = pd.DataFrame([{**base_input, axis: val} for val in sweep_values])
raw_probs = FlashFloodNet.predict(sweep_df).flatten()
if use_trust:
trust_mods = FlashFloodTrustNet.predict(FlashFloodScaler.transform(sweep_df)).flatten()
adjusted_probs = np.clip(raw_probs * trust_mods, 0, 1)
else:
adjusted_probs = raw_probs
fig, ax = plt.subplots()
ax.plot(sweep_values, raw_probs, "--", color="gray", label="Base Model")
if use_trust:
ax.plot(sweep_values, adjusted_probs, color="darkcyan", label="With FlashFloodTrustNet")
ax.set_xlabel(axis.replace("_", " ").title())
ax.set_ylabel("Flash Flood Probability")
ax.set_title(f"Flash Flood Probability vs. {axis.replace('_', ' ').title()}")
ax.legend()
ax.grid(True)
return fig
def generate_quake_plot(axis, use_trustnet):
axis_ranges = {
"seismic_moment_rate": (5e14, 2.5e16),
"surface_displacement_rate": (0, 100),
"coulomb_stress_change": (0, 700),
"average_focal_depth": (0, 60),
"fault_slip_rate": (0, 20)
}
sweep_values = np.linspace(*axis_ranges[axis], 100)
# Baseline input for all other features
base_input = {
"seismic_moment_rate": 1.5e16,
"surface_displacement_rate": 35,
"coulomb_stress_change": 300,
"average_focal_depth": 18,
"fault_slip_rate": 7.0
}
# Create sweep dataframe
sweep_df = pd.DataFrame([{**base_input, axis: val} for val in sweep_values])
raw_preds = QuakeNet.predict(sweep_df).flatten()
if use_trustnet:
scaled_df = QuakeTrustScaler.transform(sweep_df)
trust_scores = QuakeTrustNet.predict(scaled_df).flatten()
modulated = np.clip(raw_preds * trust_scores, 0, 1)
else:
modulated = raw_preds
# Plot
fig, ax = plt.subplots()
ax.plot(sweep_values, raw_preds, "--", color="gray", label="QuakeNet")
if use_trustnet:
ax.plot(sweep_values, modulated, color="darkred", label="With QuakeTrustNet")
ax.set_xlabel(axis.replace("_", " ").title())
ax.set_ylabel("Quake Probability")
ax.set_title(f"Earthquake Likelihood vs. {axis.replace('_', ' ').title()}")
ax.legend()
ax.grid(True)
return fig
def generate_hurricane_plot(axis, use_trustnet):
axis_ranges = {
"sea_surface_temperature": (24, 32),
"ocean_heat_content": (20, 150),
"mid_level_humidity": (20, 100),
"vertical_wind_shear": (0, 30),
"potential_vorticity": (0.0, 3.0)
}
sweep_values = np.linspace(*axis_ranges[axis], 100)
base_input = {
"sea_surface_temperature": 29.0,
"ocean_heat_content": 95,
"mid_level_humidity": 65,
"vertical_wind_shear": 9,
"potential_vorticity": 1.2
}
df = pd.DataFrame([{**base_input, axis: val} for val in sweep_values])
raw_preds = HurricaneNet.predict(df).flatten()
if use_trustnet:
scaled_df = HurricaneTrustScaler.transform(df)
trust_scores = HurricaneTrustNet.predict(scaled_df).flatten()
modulated = np.clip(raw_preds * trust_scores, 0, 1)
else:
modulated = raw_preds
# Plot
fig, ax = plt.subplots()
ax.plot(sweep_values, raw_preds, "--", color="gray", label="HurricaneNet")
if use_trustnet:
ax.plot(sweep_values, modulated, color="navy", label="Trust-Modulated")
ax.set_xlabel(axis.replace("_", " ").title())
ax.set_ylabel("Formation Likelihood")
ax.set_title(f"Hurricane Formation vs. {axis.replace('_', ' ').title()}")
ax.legend()
ax.grid(True)
return fig
with gr.Blocks(theme=gr.themes.Default(), css=".tab-nav-button { font-size: 1.1rem !important; padding: 0.8em; } ") as demo:
gr.Markdown("### STRIKE: A High-Precision AI Framework for Early Prediction of Natural Diasters")
gr.Markdown("##### Preview")
with gr.Tab("🔥 Wildfires"):
with gr.Row():
with gr.Column():
with gr.Row():
temp = gr.Slider(280, 330, value=300, label="Temperature (K)")
temp_unit = gr.Dropdown(["K", "°C", "°F"], value="K", label="", scale=0.2)
temp_unit.change(fn=update_temp_slider, inputs=temp_unit, outputs=temp)
with gr.Row():
humidity = gr.Slider(0, 100, value=30, label="Humidity (%)")
gr.Dropdown(["%"], value="%", label="", scale=0.1)
with gr.Row():
wind_speed = gr.Slider(0, 50, value=10, label="Wind Speed (m/s)")
wind_unit = gr.Dropdown(["m/s", "km/h", "mp/h"], value="m/s", label="", scale=0.2)
wind_unit.change(update_wind_slider, inputs=wind_unit, outputs=wind_speed)
with gr.Row():
elevation = gr.Slider(0, 3000, value=500, label="Elevation (m)")
elev_unit = gr.Dropdown(["m", "ft"], value="m", label="", scale=0.2)
elev_unit.change(update_elevation_slider, inputs=elev_unit, outputs=elevation)
with gr.Row():
vegetation_index = gr.Slider(0.0, 2.0, value=1.0, label="Vegetation Index (NDVI)")
gr.Dropdown(["NDVI"], value="NDVI", label="", scale=0.2)
use_trust = gr.Checkbox(label="Use FireTrustNet", value=True)
sweep_axis = gr.Radio(["temperature", "humidity", "wind_speed", "vegetation_index", "elevation"],
label="Sweep Axis", value="temperature")
predict_btn = gr.Button("Predict")
with gr.Column():
with gr.Accordion("ℹ️ Feature Definitions", open=False):
gr.Markdown("""
**Temperaure:** Current Temperature
**Humidity:** Current Humidity
**Wind Speed:** Current Wind Speed
**Elevation:** Current Elevation Relative to Sea Level
**Vegitation Index:** Your area's NDVI score.
""")
output = gr.Textbox(label="Result")
plot_output = gr.Plot(label="Trust Modulation Plot")
predict_btn.click(
fn=lambda t, tu, h, w, wu, v, e, eu, trust, axis: (
predict_fire(t, tu, h, w, wu, v, e, eu, trust),
generate_plot(axis, trust)
),
inputs=[
temp, temp_unit,
humidity,
wind_speed, wind_unit,
vegetation_index,
elevation, elev_unit,
use_trust,
sweep_axis
],
outputs=[output, plot_output]
)
with gr.Tab("🌊 Fluvial Floods"):
with gr.Row():
with gr.Column():
with gr.Row():
rainfall = gr.Slider(0, 200, value=50, label="Rainfall (mm)")
rainfall_unit = gr.Dropdown(["mm", "in"], value="mm", label="", scale=0.2)
with gr.Row():
water_level = gr.Slider(0, 8000, value=3000, label="Relative Water Level (mm)")
gr.Dropdown(["mm"], value="mm", label="", scale=0.2)
with gr.Row():
elevation_flood = gr.Slider(0, 20, value=5, label="Relative Elevation (m)")
elev_flood_unit = gr.Dropdown(["m", "ft"], value="m", label="", scale=0.2)
with gr.Row():
slope = gr.Slider(0.0, 20.0, value=2.0, label="Slope (°)")
gr.Dropdown(["°"], label="",scale=0.2)
with gr.Row():
distance = gr.Slider(0, 2000, value=100, label="Distance from River (m)")
distance_unit = gr.Dropdown(["m", "ft"], value="m", label="", scale=0.2)
elev_flood_unit.change(update_flood_elevation_slider, inputs=elev_flood_unit, outputs=elevation_flood)
distance_unit.change(update_flood_distance_slider, inputs=distance_unit, outputs=distance)
rainfall_unit.change(update_flood_rainfall_slider, inputs=rainfall_unit, outputs=rainfall)
use_trust_flood = gr.Checkbox(label="Use FV-FloodTrustNet", value=True)
flood_sweep_axis = gr.Radio(
["rainfall", "water_level", "elevation", "slope", "distance_from_river"],
label="Sweep Axis", value="rainfall"
)
predict_btn_flood = gr.Button("Predict")
with gr.Column():
with gr.Accordion("ℹ️ Feature Definitions", open=False):
gr.Markdown("""
**Rainfall:** Total recent precipitation - Last 24 hours.
**Relative Water Level:** Height of river assuming river is 2.5m (8.202 ft) deep. Adjust accordingly.
**Relative Elevation:** Ground height relative to nearest body of water (river).
**Slope:** Terrain gradient measured in degrees.
**Distance from River:** Horizontal distance from riverbed in meters. This does not account for levees or terrain barriers.
""")
flood_output = gr.Textbox(label="Flood Risk")
flood_plot = gr.Plot(label="Trust Modulation Plot")
predict_btn_flood.click(
fn=lambda r, ru, wl, e, eu, s, d, du, trust, axis: (
predict_flood(r, ru, wl, e, eu, s, d, du, trust),
generate_flood_plot(axis, trust)
),
inputs=[
rainfall, rainfall_unit,
water_level,
elevation_flood, elev_flood_unit,
slope,
distance, distance_unit,
use_trust_flood,
flood_sweep_axis
],
outputs=[flood_output, flood_plot]
)
with gr.Tab("🌧️ Pluvial Floods"):
with gr.Row():
with gr.Column():
with gr.Row():
rain_input = gr.Slider(0, 150, value=12, label="Rainfall Intensity (mm/hr)")
rain_unit_dropdown = gr.Dropdown(["mm/hr", "in/hr"], value="mm/hr", label="", scale=0.2)
with gr.Row():
imp_input = gr.Slider(0.0, 1.0, value=0.5, label="Impervious Ratio")
gr.Dropdown(["ISR"], value="ISR", label="", scale=0.2)
with gr.Row():
drain_input = gr.Slider(1.0, 5.0, value=2.5, label="Drainage Density")
gr.Dropdown(["L/A"], value="L/A", label="", scale=0.2)
with gr.Row():
urban_input = gr.Slider(0.0, 1.0, value=0.6, label="Urbanization Index")
gr.Dropdown(["uP/tP"], value="uP/tP", label="", scale=0.2)
with gr.Row():
conv_input = gr.Slider(0.0, 1.0, value=0.5, label="Convergence Index")
gr.Dropdown(["CI"], value="CI", label="", scale=0.2)
rain_unit_dropdown.change(update_rain_slider, inputs=rain_unit_dropdown, outputs=rain_input)
use_trust_pv = gr.Checkbox(label="Use PV-FloodTrustNet", value=True)
pv_sweep_axis = gr.Radio(
["rainfall_intensity", "impervious_ratio", "drainage_density", "urbanization_index", "convergence_index"],
label="Sweep Axis", value="rainfall_intensity"
)
pv_predict_btn = gr.Button("Predict")
with gr.Column():
with gr.Accordion("ℹ️ Feature Definitions", open=False):
gr.Markdown("""
**Rainfall Intensity:** Recent precipitation rate, typically measured in mm/hr.
**Impervious Ratio:** Proportion of surface area that cannot absorb water.
**Drainage Density:** Drainage channel length per unit area.
**Urbanization Index:** Estimate of built-up density and infrastructure pressure.
**Convergence Index:** Terrain feature promoting water pooling or runoff directionality.
""")
pv_output = gr.Textbox(label="PV-Flood Risk Verdict")
pv_plot = gr.Plot(label="Trust Modulation Plot")
pv_predict_btn.click(
fn=lambda r, ra, i, d, u, c, trust, axis: (
predict_pluvial_flood(r, i, d, u, c, trust, ra),
generate_pluvial_plot(axis, trust)
),
inputs=[rain_input, rain_unit_dropdown, imp_input, drain_input, urban_input, conv_input, use_trust_pv, pv_sweep_axis],
outputs=[pv_output, pv_plot]
)
with gr.Tab("🌩️ Flash Floods"):
with gr.Row():
with gr.Column():
with gr.Row():
rainfall_intensity = gr.Slider(0, 150, value=12, label="Rainfall Intensity (mm/hr)")
rainfall_unit_dropdown = gr.Dropdown(["mm/hr", "in/hr"], value="mm/hr", label="", scale=0.2)
with gr.Row():
slope_input = gr.Slider(0, 30, value=15, label="Slope (°)")
gr.Dropdown(["°"], label="", scale=0.1)
with gr.Row():
drainage_input = gr.Slider(1.0, 5.0, value=3.0, label="Drainage Density")
gr.Dropdown(["L/A"], value="L/A", label="", scale=0.2)
with gr.Row():
saturation_input = gr.Slider(0.3, 1.0, value=0.7, label="Soil Saturation")
gr.Dropdown(["VWC"], value="VWC", label="", scale=0.2)
with gr.Row():
convergence_input = gr.Slider(0.0, 1.0, value=0.5, label="Convergence Index")
gr.Dropdown(["CI"], value="CI", label="", scale=0.2)
rainfall_unit_dropdown.change(update_rain_slider, inputs=rainfall_unit_dropdown, outputs=rainfall_intensity)
use_trust_flash = gr.Checkbox(label="Use FlashFloodTrustNet", value=True)
flash_sweep_axis = gr.Radio(
["rainfall_intensity", "slope", "drainage_density", "soil_saturation", "convergence_index"],
label="Sweep Axis", value="rainfall_intensity"
)
flash_predict_btn = gr.Button("Predict")
with gr.Column():
with gr.Accordion("ℹ️ Feature Definitions", open=False):
gr.Markdown("""
**Rainfall Intensity:** Measured in mm/hr or in/hr.
**Slope:** Terrain gradient in degrees.
**Drainage Density:** Total stream length per unit area.
**Soil Saturation:** Volumetric water content — higher values = wetter ground.
**Convergence Index:** Measures topographical tendency to channel runoff.
""")
flash_output = gr.Textbox(label="Flash Flood Risk Verdict")
flash_plot = gr.Plot(label="Trust Modulation Plot")
flash_predict_btn.click(
fn=lambda r, ru, s, d, ss, c, trust, axis: (
predict_flash_flood(convert_rainfall_intensity(r, ru), s, d, ss, c, trust),
generate_flash_plot(axis, trust)
),
inputs=[
rainfall_intensity, rainfall_unit_dropdown,
slope_input, drainage_input, saturation_input,
convergence_input, use_trust_flash, flash_sweep_axis
],
outputs=[flash_output, flash_plot]
)
with gr.Tab("🌎 Earthquakes"):
with gr.Row():
with gr.Column():
with gr.Row():
moment_input = gr.Slider(
minimum=0.5, maximum=25.0, value=15.0,
label="Seismic Moment Rate (×10¹⁶ Nm/s)"
)
gr.Dropdown(["Nm/s"], value="Nm/s", label="", scale=0.2)
with gr.Row():
displacement_input = gr.Slider(0, 100, value=35, label="Surface Displacement Rate (mm/yr)")
gr.Dropdown(["mm/yr"], value="mm/yr", label="", scale=0.2)
with gr.Row():
stress_input = gr.Slider(0, 700, value=300, label="Coulomb Stress Change (Pa)")
gr.Dropdown(["Pa"], value="Pa", label="", scale=0.2)
with gr.Row():
depth_input = gr.Slider(0, 60, value=18, label="Average Focal Depth (km)")
gr.Dropdown(["km"], value="km", label="", scale=0.2)
with gr.Row():
slip_input = gr.Slider(0, 20, value=7.0, label="Fault Slip Rate (mm/yr)")
gr.Dropdown(["mm/yr"], value="mm/yr", label="", scale=0.2)
use_trust_quake = gr.Checkbox(label="Use QuakeTrustNet", value=True)
quake_sweep_axis = gr.Radio(
["seismic_moment_rate", "surface_displacement_rate",
"coulomb_stress_change", "average_focal_depth", "fault_slip_rate"],
label="Sweep Axis", value="seismic_moment_rate"
)
quake_predict_btn = gr.Button("Predict")
with gr.Column():
with gr.Accordion("ℹ️ Feature Definitions", open=False):
gr.Markdown("""
**Seismic Moment Rate (Nm/s):** Total energy release rate from seismic events.
**Surface Displacement Rate (mm/yr):** Horizontal/vertical ground motion observed via GPS/InSAR.
**Coulomb Stress Change (Pa):** Fault stress changes post-seismic activity.
**Average Focal Depth (km):** Typical depth of earthquakes in the region.
**Fault Slip Rate (mm/yr):** Long-term fault motion due to tectonic loading.
""")
quake_output = gr.Textbox(label="Earthquake Risk Verdict")
quake_plot = gr.Plot(label="Trust Modulation Plot")
quake_predict_btn.click(
fn=lambda m, d, s, dp, sl, trust, axis: (
predict_quake(m, d, s, dp, sl, trust),
generate_quake_plot(axis, trust)
),
inputs=[
moment_input, displacement_input,
stress_input, depth_input, slip_input,
use_trust_quake, quake_sweep_axis
],
outputs=[quake_output, quake_plot]
)
with gr.Tab("🌀 Hurricanes"):
with gr.Row():
with gr.Column():
with gr.Row():
sst_input = gr.Slider(40, 140, value=80.0, label="Sea Surface Temperature (°C)")
sst_unit = gr.Dropdown(["°C", "°F"], value="°F", label="", scale=0.2)
sst_unit.change(update_temp_slider, inputs=sst_unit, outputs=sst_input)
with gr.Row():
ohc_input = gr.Slider(20, 150, value=95, label="Ocean Heat Content (kJ/cm²)")
gr.Dropdown(["kJ/cm²"], value="kJ/cm²", label="", scale=0.2)
with gr.Row():
humidity_input = gr.Slider(20, 100, value=65, label="Mid-Level Relative Humidity (%)")
gr.Dropdown(["%"], value="%", label="", scale=0.2)
with gr.Row():
shear_input = gr.Slider(0, 30, value=9, label="Vertical Wind Shear (m/s)")
gr.Dropdown(["m/s"], value="m/s", label="", scale=0.2)
with gr.Row():
vort_input = gr.Slider(0.0, 3.0, value=1.2, label="Potential Vorticity (PVU)")
gr.Dropdown(["PVU"], value="PVU", label="", scale=0.2)
use_trust_cyclone = gr.Checkbox(label="Use HurricaneTrustNet", value=True)
hurricane_sweep_axis = gr.Radio(
["sea_surface_temperature", "ocean_heat_content",
"mid_level_humidity", "vertical_wind_shear", "potential_vorticity"],
label="Sweep Axis", value="sea_surface_temperature"
)
hurricane_predict_btn = gr.Button("Predict")
with gr.Column():
with gr.Accordion("ℹ️ Feature Definitions", open=False):
gr.Markdown("""
**Sea Surface Temperature (°C):** Thermal fuel for cyclone formation.
**Ocean Heat Content (kJ/cm²):** Depth-integrated ocean energy — sustains storm growth.
**Mid-Level Relative Humidity (%):** Moisture around 500 hPa — supports convective core.
**Vertical Wind Shear (m/s):** Disrupts vertical structure — high values inhibit intensification.
**Potential Vorticity (PVU):** Atmospheric spin and structure — higher values favor formation.
""")
hurricane_output = gr.Textbox(label="Hurricane Formation Verdict")
hurricane_plot = gr.Plot(label="Trust Modulation Plot")
hurricane_predict_btn.click(
fn=lambda sst, sst_unit, ohc, humid, shear, vort, trust, axis: (
predict_hurricane(sst, ohc, humid, shear, vort, sst_unit, trust),
generate_hurricane_plot(axis, trust)
),
inputs=[
sst_input, sst_unit, ohc_input, humidity_input,
shear_input, vort_input, use_trust_cyclone,
hurricane_sweep_axis
],
outputs=[hurricane_output, hurricane_plot]
)
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_methods=["*"],
allow_headers=["*"],
)
app = gr.mount_gradio_app(app, demo, path="")
@app.get("/api/status")
def hello():
return JSONResponse({"status": "ok"})