import gradio as gr from fastapi import FastAPI from fastapi.responses import JSONResponse from fastapi.middleware.cors import CORSMiddleware import tensorflow as tf import pandas as pd import numpy as np import joblib from load import * from helper import * from matplotlib import pyplot as plt def predict_fire(temp, temp_unit, humidity, wind, wind_unit, veg, elev, elev_unit, use_trust): input_data = { "temperature": convert_temperature(temp, temp_unit), "humidity": humidity, "wind_speed": convert_wind_speed(wind, wind_unit), "vegetation_index": veg, "elevation": convert_elevation(elev, elev_unit) } input_df = pd.DataFrame([input_data]) base_prob = FireNet.predict(input_df)[0][0] if use_trust: trust_score = FireTrustNet.predict(FireScaler.transform(input_df))[0][0] final = np.clip(base_prob * trust_score, 0, 1) else: final = base_prob if final > 0.49: verdict = "🔥 FIRE LIKELY" elif final > 0.43 and final < 0.50: verdict = "⚠️ Fire Possible" else: verdict = "🛡️ Fire Unlikely" return f"{verdict} ({final:.2f})" def predict_flood(rainfall_val, rainfall_unit, water_level_val, elevation_val, elev_unit, slope_val, distance_val, distance_unit, use_trustnet): # Unit conversion rainfall = convert_rainfall(rainfall_val, rainfall_unit) elevation = convert_elevation(elevation_val, elev_unit) distance = convert_distance(distance_val, distance_unit) # Construct input for FloodNet base_df = pd.DataFrame([{ "Rainfall": rainfall, "Water Level": water_level_val, "Elevation": elevation, "Slope": slope_val, "Distance from River": distance }]) base_prob = FloodNet.predict(base_df)[0][0] if use_trustnet: trust_df = pd.DataFrame([{ "rainfall": rainfall, "water_level": water_level_val, "elevation": elevation, "slope": slope_val, "distance_from_river": distance }]) trust_score = FloodTrustNet.predict(FloodScaler.transform(trust_df))[0][0] final = np.clip(base_prob * trust_score, 0, 1) else: final = base_prob if final > 0.49: verdict = "🏞️ FV-FLOOD LIKELY" elif final > 0.43 and final < 0.50: verdict = "⚠️ FV-Flood Possible" else: verdict = "🛡️ FV-Flood Unlikely" return f"{verdict} ({final:.2f})" def predict_pluvial_flood(rain, imp, drain, urban, conv, use_trust, rainfall_unit): print(rainfall_unit) rain = convert_rainfall_intensity(rain, rainfall_unit) print(rain) input_data = { "rainfall_intensity": rain, "impervious_ratio": imp, "drainage_density": drain, "urbanization_index": urban, "convergence_index": conv } input_df = pd.DataFrame([input_data]) base_prob = PV_FloodNet.predict(input_df)[0][0] if use_trust: trust_score = PV_FloodTrustNet.predict(PV_FloodScaler.transform(input_df))[0][0] final = np.clip(base_prob * trust_score, 0, 1) else: final = base_prob if final > 0.52: verdict = "🌧️ PV-FLOOD LIKELY" elif 0.45 < final <= 0.52: verdict = "⚠️ PV-Flood Possible" else: verdict = "🛡️ PV-Flood Unlikely" return f"{verdict} ({final:.2f})" def predict_flash_flood(rainfall, slope, drainage, saturation, convergence, use_trust): input_data = { "rainfall_intensity": rainfall, "slope": slope, "drainage_density": drainage, "soil_saturation": saturation, "convergence_index": convergence } input_df = pd.DataFrame([input_data]) base_pred = FlashFloodNet.predict(input_df)[0][0] if use_trust: trust_score = FlashFloodTrustNet.predict(FlashFloodScaler.transform(input_df))[0][0] adjusted = np.clip(base_pred * trust_score, 0, 1) else: adjusted = base_pred if adjusted > 0.55: return f"🌩️ FLASH FLOOD LIKELY ({adjusted:.2f})" elif 0.40 < adjusted <= 0.55: return f"⚠️ Flash Flood Possible ({adjusted:.2f})" else: return f"🛡️ Flash Flood Unlikely ({adjusted:.2f})" def predict_quake(dotM0, sdr, coulomb, afd, fsr, use_trust): dotM0 = dotM0 * 1e16 input_data = { "seismic_moment_rate": dotM0, "surface_displacement_rate": sdr, "coulomb_stress_change": coulomb, "average_focal_depth": afd, "fault_slip_rate": fsr } input_df = pd.DataFrame([input_data]) base_pred = QuakeNet.predict(input_df)[0][0] if use_trust: trust_score = QuakeTrustNet.predict(QuakeTrustScaler.transform(input_df))[0][0] adjusted = np.clip(base_pred * trust_score, 0, 1) else: adjusted = base_pred if adjusted > 0.55: return f"🌎 EARTHQUAKE LIKELY ({adjusted:.2f})" elif 0.40 < adjusted <= 0.55: return f"⚠️ Earthquake Possible ({adjusted:.2f})" else: return f"🛡️ Earthquake Unlikely ({adjusted:.2f})" def predict_hurricane(sst, ohc, mlh, vws, pv, sstu, use_trust): sst = convert_temp_c(value=sst, unit=sstu) input_data = { "sea_surface_temperature": sst, "ocean_heat_content": ohc, "mid_level_humidity": mlh, "vertical_wind_shear": vws, "potential_vorticity": pv } input_df = pd.DataFrame([input_data]) base_pred = HurricaneNet.predict(input_df)[0][0] if use_trust: trust_score = HurricaneTrustNet.predict(HurricaneTrustScaler.transform(input_df))[0][0] adjusted = np.clip(base_pred * trust_score, 0, 1) else: adjusted = base_pred if adjusted > 0.55: return f"🌀 HURRICANE LIKELY ({adjusted:.2f})" elif 0.40 < adjusted <= 0.55: return f"⚠️ Hurricane Possible ({adjusted:.2f})" else: return f"🛡️ Hurricane Unlikely ({adjusted:.2f})" def predict_tornado(srh, cape, lcl, shear, stp, use_trustnet): features = [srh, cape, lcl, shear, stp] raw = np.array(features, dtype="float32").reshape(1, -1) base_pred = TornadoNet(raw).numpy()[0][0] verdict = None if use_trustnet: scaled = TornadoTrustScaler.transform(pd.DataFrame([features], columns=[ "storm_relative_helicity", "CAPE", "lifted_condensation_level", "bulk_wind_shear", "significant_tornado_param" ])) trust_score = TornadoTrustNet(scaled).numpy()[0][0] adjusted = np.clip(base_pred * trust_score, 0, 1) else: adjusted = base_pred if adjusted > 0.55: return f"🌪️ TORNADO LIKELY ({adjusted:.2f})" elif 0.40 < adjusted <= 0.55: return f"⚠️ Tornado Possible ({adjusted:.2f})" else: return f"🛡️ Tornado Unlikely ({adjusted:.2f})" def generate_plot(axis, use_trustnet): sweep_values = np.linspace({ "temperature": (280, 320), "humidity": (0, 100), "wind_speed": (0, 50), "vegetation_index": (0.0, 2.0), "elevation": (0, 3000) }[axis][0], { "temperature": (280, 320), "humidity": (0, 100), "wind_speed": (0, 50), "vegetation_index": (0.0, 2.0), "elevation": (0, 3000) }[axis][1], 100) base_input = { "temperature": 300.0, "humidity": 30.0, "wind_speed": 10.0, "vegetation_index": 1.0, "elevation": 500.0 } sweep_df = pd.DataFrame([{ **base_input, axis: val } for val in sweep_values]) raw_probs = FireNet.predict(sweep_df).flatten() if use_trustnet: trust_mods = FireTrustNet.predict(FireScaler.transform(sweep_df)).flatten() adjusted_probs = np.clip(raw_probs * trust_mods, 0, 1) else: adjusted_probs = raw_probs fig, ax = plt.subplots() ax.plot(sweep_values, raw_probs, "--", color="gray", label="Base Model") if use_trustnet: ax.plot(sweep_values, adjusted_probs, color="orangered", label="With FireTrustNet") ax.set_xlabel(axis.replace("_", " ").title()) ax.set_ylabel("Fire Probability") ax.set_title(f"Fire Probability vs. {axis.replace('_', ' ').title()}") ax.legend() ax.grid(True) return fig def generate_flood_plot(axis, use_trustnet): sweep_range = { "rainfall": (0, 150), "water_level": (0, 8000), "elevation": (0, 20), "slope": (0, 20), "distance_from_river": (0, 2000) } values = np.linspace(*sweep_range[axis], 100) base_example = { "rainfall": 50.0, "water_level": 3000.0, "elevation": 5.0, "slope": 2.0, "distance_from_river": 100.0 } # Build test cases by sweeping one input inputs = pd.DataFrame([ {**base_example, axis: v} for v in values ]) # Predict with FloodNet floodnet_inputs = inputs.rename(columns={ "rainfall": "Rainfall", "water_level": "Water Level", "elevation": "Elevation", "slope": "Slope", "distance_from_river": "Distance from River" }) base_probs = FloodNet.predict(floodnet_inputs).flatten() if use_trustnet: trust_inputs = inputs.copy() trust_scores = FloodTrustNet.predict(FloodScaler.transform(trust_inputs)).flatten() modulated_probs = np.clip(base_probs * trust_scores, 0, 1) else: modulated_probs = base_probs # Plotting fig, ax = plt.subplots() ax.plot(values, base_probs, "--", color="gray", label="FloodNet") if use_trustnet: ax.plot(values, modulated_probs, color="blue", label="With FloodTrustNet") ax.set_xlabel(axis.replace("_", " ").title()) ax.set_ylabel("Flood Probability") ax.set_title(f"Flood Probability vs. {axis.replace('_', ' ').title()}") ax.grid(True) ax.legend() return fig def generate_pluvial_plot(axis, use_trust): sweep_range = { "rainfall_intensity": (0, 160), "impervious_ratio": (0.0, 1.0), "drainage_density": (1.0, 5.0), "urbanization_index": (0.0, 1.0), "convergence_index": (0.0, 1.0) } sweep_values = np.linspace(*sweep_range[axis], 100) base_input = { "rainfall_intensity": 60.0, "impervious_ratio": 0.5, "drainage_density": 2.5, "urbanization_index": 0.6, "convergence_index": 0.5 } sweep_df = pd.DataFrame([ {**base_input, axis: val} for val in sweep_values ]) base_probs = PV_FloodNet.predict(sweep_df).flatten() if use_trust: trust_mods = PV_FloodTrustNet.predict(PV_FloodScaler.transform(sweep_df)).flatten() adjusted = np.clip(base_probs * trust_mods, 0, 1) else: adjusted = base_probs fig, ax = plt.subplots() ax.plot(sweep_values, base_probs, "--", color="gray", label="Base Model") if use_trust: ax.plot(sweep_values, adjusted, color="royalblue", label="With PV-FloodTrustNet") ax.set_xlabel(axis.replace("_", " ").title()) ax.set_ylabel("PV Flood Probability") ax.set_title(f"PV Flood Probability vs. {axis.replace('_', ' ').title()}") ax.legend() ax.grid(True) return fig def generate_flash_plot(axis, use_trust): sweep_values = np.linspace( {"rainfall_intensity": 0, "slope": 0, "drainage_density": 1.0, "soil_saturation": 0.3, "convergence_index": 0.0}[axis], {"rainfall_intensity": 150, "slope": 30, "drainage_density": 5.0, "soil_saturation": 1.0, "convergence_index": 1.0}[axis], 100 ) base_input = { "rainfall_intensity": 90, "slope": 15, "drainage_density": 3.0, "soil_saturation": 0.7, "convergence_index": 0.5 } sweep_df = pd.DataFrame([{**base_input, axis: val} for val in sweep_values]) raw_probs = FlashFloodNet.predict(sweep_df).flatten() if use_trust: trust_mods = FlashFloodTrustNet.predict(FlashFloodScaler.transform(sweep_df)).flatten() adjusted_probs = np.clip(raw_probs * trust_mods, 0, 1) else: adjusted_probs = raw_probs fig, ax = plt.subplots() ax.plot(sweep_values, raw_probs, "--", color="gray", label="Base Model") if use_trust: ax.plot(sweep_values, adjusted_probs, color="darkcyan", label="With FlashFloodTrustNet") ax.set_xlabel(axis.replace("_", " ").title()) ax.set_ylabel("Flash Flood Probability") ax.set_title(f"Flash Flood Probability vs. {axis.replace('_', ' ').title()}") ax.legend() ax.grid(True) return fig def generate_quake_plot(axis, use_trustnet): axis_ranges = { "seismic_moment_rate": (5e14, 2.5e16), "surface_displacement_rate": (0, 100), "coulomb_stress_change": (0, 700), "average_focal_depth": (0, 60), "fault_slip_rate": (0, 20) } sweep_values = np.linspace(*axis_ranges[axis], 100) # Baseline input for all other features base_input = { "seismic_moment_rate": 1.5e16, "surface_displacement_rate": 35, "coulomb_stress_change": 300, "average_focal_depth": 18, "fault_slip_rate": 7.0 } # Create sweep dataframe sweep_df = pd.DataFrame([{**base_input, axis: val} for val in sweep_values]) raw_preds = QuakeNet.predict(sweep_df).flatten() if use_trustnet: scaled_df = QuakeTrustScaler.transform(sweep_df) trust_scores = QuakeTrustNet.predict(scaled_df).flatten() modulated = np.clip(raw_preds * trust_scores, 0, 1) else: modulated = raw_preds # Plot fig, ax = plt.subplots() ax.plot(sweep_values, raw_preds, "--", color="gray", label="QuakeNet") if use_trustnet: ax.plot(sweep_values, modulated, color="darkred", label="With QuakeTrustNet") ax.set_xlabel(axis.replace("_", " ").title()) ax.set_ylabel("Quake Probability") ax.set_title(f"Earthquake Likelihood vs. {axis.replace('_', ' ').title()}") ax.legend() ax.grid(True) return fig def generate_hurricane_plot(axis, use_trustnet): axis_ranges = { "sea_surface_temperature": (24, 32), "ocean_heat_content": (20, 150), "mid_level_humidity": (20, 100), "vertical_wind_shear": (0, 30), "potential_vorticity": (0.0, 3.0) } sweep_values = np.linspace(*axis_ranges[axis], 100) base_input = { "sea_surface_temperature": 29.0, "ocean_heat_content": 95, "mid_level_humidity": 65, "vertical_wind_shear": 9, "potential_vorticity": 1.2 } df = pd.DataFrame([{**base_input, axis: val} for val in sweep_values]) raw_preds = HurricaneNet.predict(df).flatten() if use_trustnet: scaled_df = HurricaneTrustScaler.transform(df) trust_scores = HurricaneTrustNet.predict(scaled_df).flatten() modulated = np.clip(raw_preds * trust_scores, 0, 1) else: modulated = raw_preds # Plot fig, ax = plt.subplots() ax.plot(sweep_values, raw_preds, "--", color="gray", label="HurricaneNet") if use_trustnet: ax.plot(sweep_values, modulated, color="navy", label="Trust-Modulated") ax.set_xlabel(axis.replace("_", " ").title()) ax.set_ylabel("Formation Likelihood") ax.set_title(f"Hurricane Formation vs. {axis.replace('_', ' ').title()}") ax.legend() ax.grid(True) return fig def generate_tornado_plot(axis, use_trustnet): axis_ranges = { "storm_relative_helicity": (100, 500), "CAPE": (0, 4000), "lifted_condensation_level": (300, 2000), "bulk_wind_shear": (0, 30), "significant_tornado_param": (0.0, 5.0) } sweep_values = np.linspace(*axis_ranges[axis], 100) base_input = { "storm_relative_helicity": 280, "CAPE": 3000, "lifted_condensation_level": 950, "bulk_wind_shear": 12, "significant_tornado_param": 1.8 } df = pd.DataFrame([{**base_input, axis: val} for val in sweep_values]) raw_preds = TornadoNet.predict(df).flatten() if use_trustnet: scaled_df = TornadoTrustScaler.transform(df) trust_scores = TornadoTrustNet.predict(scaled_df).flatten() modulated = np.clip(raw_preds * trust_scores, 0, 1) else: modulated = raw_preds fig, ax = plt.subplots() ax.plot(sweep_values, raw_preds, "--", color="gray", label="TornadoNet") if use_trustnet: ax.plot(sweep_values, modulated, color="darkred", label="Trust-Modulated") ax.set_xlabel(axis.replace("_", " ").title()) ax.set_ylabel("Tornado Likelihood") ax.set_title(f"Tornado Formation vs. {axis.replace('_', ' ').title()}") ax.legend() ax.grid(True) return fig with gr.Blocks(theme=gr.themes.Default(), css=".tab-nav-button { font-size: 1.1rem !important; padding: 0.8em; } ") as demo: gr.Markdown("### STRIKE: A High-Precision AI Framework for Early Prediction of Natural Diasters") gr.Markdown("##### Preview") with gr.Tab("🔥 Wildfires"): with gr.Row(): with gr.Column(): with gr.Row(): temp = gr.Slider(280, 330, value=300, label="Temperature (K)") temp_unit = gr.Dropdown(["K", "°C", "°F"], value="K", label="", scale=0.2) temp_unit.change(fn=update_temp_slider, inputs=temp_unit, outputs=temp) with gr.Row(): humidity = gr.Slider(0, 100, value=30, label="Humidity (%)") gr.Dropdown(["%"], value="%", label="", scale=0.1) with gr.Row(): wind_speed = gr.Slider(0, 50, value=10, label="Wind Speed (m/s)") wind_unit = gr.Dropdown(["m/s", "km/h", "mp/h"], value="m/s", label="", scale=0.2) wind_unit.change(update_wind_slider, inputs=wind_unit, outputs=wind_speed) with gr.Row(): elevation = gr.Slider(0, 3000, value=500, label="Elevation (m)") elev_unit = gr.Dropdown(["m", "ft"], value="m", label="", scale=0.2) elev_unit.change(update_elevation_slider, inputs=elev_unit, outputs=elevation) with gr.Row(): vegetation_index = gr.Slider(0.0, 2.0, value=1.0, label="Vegetation Index (NDVI)") gr.Dropdown(["NDVI"], value="NDVI", label="", scale=0.2) use_trust = gr.Checkbox(label="Use FireTrustNet", value=True) sweep_axis = gr.Radio(["temperature", "humidity", "wind_speed", "vegetation_index", "elevation"], label="Sweep Axis", value="temperature") predict_btn = gr.Button("Predict") with gr.Column(): with gr.Accordion("ℹ️ Feature Definitions", open=False): gr.Markdown(""" **Temperaure:** Current Temperature **Humidity:** Current Humidity **Wind Speed:** Current Wind Speed **Elevation:** Current Elevation Relative to Sea Level **Vegitation Index:** Your area's NDVI score. """) output = gr.Textbox(label="Result") plot_output = gr.Plot(label="Trust Modulation Plot") predict_btn.click( fn=lambda t, tu, h, w, wu, v, e, eu, trust, axis: ( predict_fire(t, tu, h, w, wu, v, e, eu, trust), generate_plot(axis, trust) ), inputs=[ temp, temp_unit, humidity, wind_speed, wind_unit, vegetation_index, elevation, elev_unit, use_trust, sweep_axis ], outputs=[output, plot_output] ) with gr.Tab("🌊 Fluvial Floods"): with gr.Row(): with gr.Column(): with gr.Row(): rainfall = gr.Slider(0, 200, value=50, label="Rainfall (mm)") rainfall_unit = gr.Dropdown(["mm", "in"], value="mm", label="", scale=0.2) with gr.Row(): water_level = gr.Slider(0, 8000, value=3000, label="Relative Water Level (mm)") gr.Dropdown(["mm"], value="mm", label="", scale=0.2) with gr.Row(): elevation_flood = gr.Slider(0, 20, value=5, label="Relative Elevation (m)") elev_flood_unit = gr.Dropdown(["m", "ft"], value="m", label="", scale=0.2) with gr.Row(): slope = gr.Slider(0.0, 20.0, value=2.0, label="Slope (°)") gr.Dropdown(["°"], label="",scale=0.2) with gr.Row(): distance = gr.Slider(0, 2000, value=100, label="Distance from River (m)") distance_unit = gr.Dropdown(["m", "ft"], value="m", label="", scale=0.2) elev_flood_unit.change(update_flood_elevation_slider, inputs=elev_flood_unit, outputs=elevation_flood) distance_unit.change(update_flood_distance_slider, inputs=distance_unit, outputs=distance) rainfall_unit.change(update_flood_rainfall_slider, inputs=rainfall_unit, outputs=rainfall) use_trust_flood = gr.Checkbox(label="Use FV-FloodTrustNet", value=True) flood_sweep_axis = gr.Radio( ["rainfall", "water_level", "elevation", "slope", "distance_from_river"], label="Sweep Axis", value="rainfall" ) predict_btn_flood = gr.Button("Predict") with gr.Column(): with gr.Accordion("ℹ️ Feature Definitions", open=False): gr.Markdown(""" **Rainfall:** Total recent precipitation - Last 24 hours. **Relative Water Level:** Height of river assuming river is 2.5m (8.202 ft) deep. Adjust accordingly. **Relative Elevation:** Ground height relative to nearest body of water (river). **Slope:** Terrain gradient measured in degrees. **Distance from River:** Horizontal distance from riverbed in meters. This does not account for levees or terrain barriers. """) flood_output = gr.Textbox(label="Flood Risk") flood_plot = gr.Plot(label="Trust Modulation Plot") predict_btn_flood.click( fn=lambda r, ru, wl, e, eu, s, d, du, trust, axis: ( predict_flood(r, ru, wl, e, eu, s, d, du, trust), generate_flood_plot(axis, trust) ), inputs=[ rainfall, rainfall_unit, water_level, elevation_flood, elev_flood_unit, slope, distance, distance_unit, use_trust_flood, flood_sweep_axis ], outputs=[flood_output, flood_plot] ) with gr.Tab("🌧️ Pluvial Floods"): with gr.Row(): with gr.Column(): with gr.Row(): rain_input = gr.Slider(0, 150, value=12, label="Rainfall Intensity (mm/hr)") rain_unit_dropdown = gr.Dropdown(["mm/hr", "in/hr"], value="mm/hr", label="", scale=0.2) with gr.Row(): imp_input = gr.Slider(0.0, 1.0, value=0.5, label="Impervious Ratio") gr.Dropdown(["ISR"], value="ISR", label="", scale=0.2) with gr.Row(): drain_input = gr.Slider(1.0, 5.0, value=2.5, label="Drainage Density") gr.Dropdown(["L/A"], value="L/A", label="", scale=0.2) with gr.Row(): urban_input = gr.Slider(0.0, 1.0, value=0.6, label="Urbanization Index") gr.Dropdown(["uP/tP"], value="uP/tP", label="", scale=0.2) with gr.Row(): conv_input = gr.Slider(0.0, 1.0, value=0.5, label="Convergence Index") gr.Dropdown(["CI"], value="CI", label="", scale=0.2) rain_unit_dropdown.change(update_rain_slider, inputs=rain_unit_dropdown, outputs=rain_input) use_trust_pv = gr.Checkbox(label="Use PV-FloodTrustNet", value=True) pv_sweep_axis = gr.Radio( ["rainfall_intensity", "impervious_ratio", "drainage_density", "urbanization_index", "convergence_index"], label="Sweep Axis", value="rainfall_intensity" ) pv_predict_btn = gr.Button("Predict") with gr.Column(): with gr.Accordion("ℹ️ Feature Definitions", open=False): gr.Markdown(""" **Rainfall Intensity:** Recent precipitation rate, typically measured in mm/hr. **Impervious Ratio:** Proportion of surface area that cannot absorb water. **Drainage Density:** Drainage channel length per unit area. **Urbanization Index:** Estimate of built-up density and infrastructure pressure. **Convergence Index:** Terrain feature promoting water pooling or runoff directionality. """) pv_output = gr.Textbox(label="PV-Flood Risk Verdict") pv_plot = gr.Plot(label="Trust Modulation Plot") pv_predict_btn.click( fn=lambda r, ra, i, d, u, c, trust, axis: ( predict_pluvial_flood(r, i, d, u, c, trust, ra), generate_pluvial_plot(axis, trust) ), inputs=[rain_input, rain_unit_dropdown, imp_input, drain_input, urban_input, conv_input, use_trust_pv, pv_sweep_axis], outputs=[pv_output, pv_plot] ) with gr.Tab("🌩️ Flash Floods"): with gr.Row(): with gr.Column(): with gr.Row(): rainfall_intensity = gr.Slider(0, 150, value=12, label="Rainfall Intensity (mm/hr)") rainfall_unit_dropdown = gr.Dropdown(["mm/hr", "in/hr"], value="mm/hr", label="", scale=0.2) with gr.Row(): slope_input = gr.Slider(0, 30, value=15, label="Slope (°)") gr.Dropdown(["°"], label="", scale=0.1) with gr.Row(): drainage_input = gr.Slider(1.0, 5.0, value=3.0, label="Drainage Density") gr.Dropdown(["L/A"], value="L/A", label="", scale=0.2) with gr.Row(): saturation_input = gr.Slider(0.3, 1.0, value=0.7, label="Soil Saturation") gr.Dropdown(["VWC"], value="VWC", label="", scale=0.2) with gr.Row(): convergence_input = gr.Slider(0.0, 1.0, value=0.5, label="Convergence Index") gr.Dropdown(["CI"], value="CI", label="", scale=0.2) rainfall_unit_dropdown.change(update_rain_slider, inputs=rainfall_unit_dropdown, outputs=rainfall_intensity) use_trust_flash = gr.Checkbox(label="Use FlashFloodTrustNet", value=True) flash_sweep_axis = gr.Radio( ["rainfall_intensity", "slope", "drainage_density", "soil_saturation", "convergence_index"], label="Sweep Axis", value="rainfall_intensity" ) flash_predict_btn = gr.Button("Predict") with gr.Column(): with gr.Accordion("ℹ️ Feature Definitions", open=False): gr.Markdown(""" **Rainfall Intensity:** Measured in mm/hr or in/hr. **Slope:** Terrain gradient in degrees. **Drainage Density:** Total stream length per unit area. **Soil Saturation:** Volumetric water content — higher values = wetter ground. **Convergence Index:** Measures topographical tendency to channel runoff. """) flash_output = gr.Textbox(label="Flash Flood Risk Verdict") flash_plot = gr.Plot(label="Trust Modulation Plot") flash_predict_btn.click( fn=lambda r, ru, s, d, ss, c, trust, axis: ( predict_flash_flood(convert_rainfall_intensity(r, ru), s, d, ss, c, trust), generate_flash_plot(axis, trust) ), inputs=[ rainfall_intensity, rainfall_unit_dropdown, slope_input, drainage_input, saturation_input, convergence_input, use_trust_flash, flash_sweep_axis ], outputs=[flash_output, flash_plot] ) with gr.Tab("🌎 Earthquakes"): with gr.Row(): with gr.Column(): with gr.Row(): moment_input = gr.Slider( minimum=0.5, maximum=25.0, value=15.0, label="Seismic Moment Rate (×10¹⁶ Nm/s)" ) gr.Dropdown(["Nm/s"], value="Nm/s", label="", scale=0.2) with gr.Row(): displacement_input = gr.Slider(0, 100, value=35, label="Surface Displacement Rate (mm/yr)") gr.Dropdown(["mm/yr"], value="mm/yr", label="", scale=0.2) with gr.Row(): stress_input = gr.Slider(0, 700, value=300, label="Coulomb Stress Change (Pa)") gr.Dropdown(["Pa"], value="Pa", label="", scale=0.2) with gr.Row(): depth_input = gr.Slider(0, 60, value=18, label="Average Focal Depth (km)") gr.Dropdown(["km"], value="km", label="", scale=0.2) with gr.Row(): slip_input = gr.Slider(0, 20, value=7.0, label="Fault Slip Rate (mm/yr)") gr.Dropdown(["mm/yr"], value="mm/yr", label="", scale=0.2) use_trust_quake = gr.Checkbox(label="Use QuakeTrustNet", value=True) quake_sweep_axis = gr.Radio( ["seismic_moment_rate", "surface_displacement_rate", "coulomb_stress_change", "average_focal_depth", "fault_slip_rate"], label="Sweep Axis", value="seismic_moment_rate" ) quake_predict_btn = gr.Button("Predict") with gr.Column(): with gr.Accordion("ℹ️ Feature Definitions", open=False): gr.Markdown(""" **Seismic Moment Rate (Nm/s):** Total energy release rate from seismic events. **Surface Displacement Rate (mm/yr):** Horizontal/vertical ground motion observed via GPS/InSAR. **Coulomb Stress Change (Pa):** Fault stress changes post-seismic activity. **Average Focal Depth (km):** Typical depth of earthquakes in the region. **Fault Slip Rate (mm/yr):** Long-term fault motion due to tectonic loading. """) quake_output = gr.Textbox(label="Earthquake Risk Verdict") quake_plot = gr.Plot(label="Trust Modulation Plot") quake_predict_btn.click( fn=lambda m, d, s, dp, sl, trust, axis: ( predict_quake(m, d, s, dp, sl, trust), generate_quake_plot(axis, trust) ), inputs=[ moment_input, displacement_input, stress_input, depth_input, slip_input, use_trust_quake, quake_sweep_axis ], outputs=[quake_output, quake_plot] ) with gr.Tab("🌀 Hurricanes"): with gr.Row(): with gr.Column(): with gr.Row(): sst_input = gr.Slider(40, 140, value=80.0, label="Sea Surface Temperature (°C)") sst_unit = gr.Dropdown(["°C", "°F"], value="°F", label="", scale=0.2) sst_unit.change(update_temp_slider, inputs=sst_unit, outputs=sst_input) with gr.Row(): ohc_input = gr.Slider(20, 150, value=95, label="Ocean Heat Content (kJ/cm²)") gr.Dropdown(["kJ/cm²"], value="kJ/cm²", label="", scale=0.2) with gr.Row(): humidity_input = gr.Slider(20, 100, value=65, label="Mid-Level Relative Humidity (%)") gr.Dropdown(["%"], value="%", label="", scale=0.2) with gr.Row(): shear_input = gr.Slider(0, 30, value=9, label="Vertical Wind Shear (m/s)") gr.Dropdown(["m/s"], value="m/s", label="", scale=0.2) with gr.Row(): vort_input = gr.Slider(0.0, 3.0, value=1.2, label="Potential Vorticity (PVU)") gr.Dropdown(["PVU"], value="PVU", label="", scale=0.2) use_trust_cyclone = gr.Checkbox(label="Use HurricaneTrustNet", value=True) hurricane_sweep_axis = gr.Radio( ["sea_surface_temperature", "ocean_heat_content", "mid_level_humidity", "vertical_wind_shear", "potential_vorticity"], label="Sweep Axis", value="sea_surface_temperature" ) hurricane_predict_btn = gr.Button("Predict") with gr.Column(): with gr.Accordion("ℹ️ Feature Definitions", open=False): gr.Markdown(""" **Sea Surface Temperature (°C):** Thermal fuel for cyclone formation. **Ocean Heat Content (kJ/cm²):** Depth-integrated ocean energy — sustains storm growth. **Mid-Level Relative Humidity (%):** Moisture around 500 hPa — supports convective core. **Vertical Wind Shear (m/s):** Disrupts vertical structure — high values inhibit intensification. **Potential Vorticity (PVU):** Atmospheric spin and structure — higher values favor formation. """) hurricane_output = gr.Textbox(label="Hurricane Formation Verdict") hurricane_plot = gr.Plot(label="Trust Modulation Plot") hurricane_predict_btn.click( fn=lambda sst, sst_unit, ohc, humid, shear, vort, trust, axis: ( predict_hurricane(sst, ohc, humid, shear, vort, sst_unit, trust), generate_hurricane_plot(axis, trust) ), inputs=[ sst_input, sst_unit, ohc_input, humidity_input, shear_input, vort_input, use_trust_cyclone, hurricane_sweep_axis ], outputs=[hurricane_output, hurricane_plot] ) with gr.Tab("🌪️ Tornadoes"): with gr.Row(): with gr.Column(): with gr.Row(): srh_input = gr.Slider(100, 500, value=280, label="Storm Relative Helicity (SRH, 0–3 km) [m²/s²]") gr.Dropdown(["m²/s²"], value="m²/s²", label="", scale=0.2) with gr.Row(): cape_input = gr.Slider(0, 4000, value=3000, label="Convective Available Potential Energy (CAPE) [J/kg]") gr.Dropdown(["J/kg"], value="J/kg", label="", scale=0.2) with gr.Row(): lcl_input = gr.Slider(300, 2000, value=950, label="Lifted Condensation Level (LCL) [m]") gr.Dropdown(["m"], value="m", label="", scale=0.2) with gr.Row(): shear_input = gr.Slider(0, 30, value=12, label="0–6 km Bulk Wind Shear [m/s]") gr.Dropdown(["m/s"], value="m/s", label="", scale=0.2) with gr.Row(): stp_input = gr.Slider(0.0, 5.0, value=1.8, label="Significant Tornado Parameter (STP)") gr.Dropdown(["unitless"], value="unitless", label="", scale=0.2) use_trust_tornado = gr.Checkbox(label="Use TornadoTrustNet", value=True) tornado_sweep_axis = gr.Radio( ["storm_relative_helicity", "CAPE", "lifted_condensation_level", "bulk_wind_shear", "significant_tornado_param"], label="Sweep Axis", value="CAPE" ) tornado_predict_btn = gr.Button("Predict") with gr.Column(): with gr.Accordion("ℹ️ Feature Definitions", open=False): gr.Markdown(""" **SRH (m²/s²):** Measures potential for rotating updrafts. **CAPE (J/kg):** Buoyant energy available for strong vertical motion. **LCL (m):** Lower values favor low-level vortex development. **Bulk Wind Shear (m/s):** Higher values improve storm structure. **STP (unitless):** Composite index for tornado likelihood. """) tornado_output = gr.Textbox(label="Tornado Formation Verdict") tornado_plot = gr.Plot(label="Trust-Modulated Tornado Risk") tornado_predict_btn.click( fn=lambda srh, cape, lcl, shear, stp, trust, axis: ( predict_tornado(srh, cape, lcl, shear, stp, trust), generate_tornado_plot(axis, trust) ), inputs=[ srh_input, cape_input, lcl_input, shear_input, stp_input, use_trust_tornado, tornado_sweep_axis ], outputs=[tornado_output, tornado_plot] ) app = FastAPI() app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_methods=["*"], allow_headers=["*"], ) app = gr.mount_gradio_app(app, demo, path="") @app.get("/api/status") def hello(): return JSONResponse({"status": "ok"})