Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright 2023 Haotian Liu | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from typing import Optional, Tuple | |
| import torch | |
| from transformers import AutoConfig, AutoModelForCausalLM, \ | |
| MptConfig, MptForCausalLM, MptModel | |
| from cumo.model.llava_arch import LlavaMetaModel, LlavaMetaForCausalLM | |
| class LlavaMptConfig(MptConfig): | |
| model_type = "llava_mpt" | |
| class LlavaMptModel(LlavaMetaModel, MptModel): | |
| config_class = LlavaMptConfig | |
| def __init__(self, config: MptConfig): | |
| config.hidden_size = config.d_model | |
| super(LlavaMptModel, self).__init__(config) | |
| def embed_tokens(self, x): | |
| return self.wte(x) | |
| class LlavaMptForCausalLM(MptForCausalLM, LlavaMetaForCausalLM): | |
| config_class = LlavaMptConfig | |
| supports_gradient_checkpointing = True | |
| def __init__(self, config): | |
| super(MptForCausalLM, self).__init__(config) | |
| self.transformer = LlavaMptModel(config) | |
| self.lm_head = torch.nn.Linear(config.hidden_size, config.vocab_size, bias=False) | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def get_model(self): | |
| return self.transformer | |
| def _set_gradient_checkpointing(self, module, value=False): | |
| if isinstance(module, LlavaMptModel): | |
| module.gradient_checkpointing = value | |
| def forward( | |
| self, | |
| input_ids: Optional[torch.LongTensor] = None, | |
| past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| inputs_embeds: Optional[torch.Tensor] = None, | |
| labels: Optional[torch.Tensor] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| images=None): | |
| input_ids, attention_mask, past_key_values, inputs_embeds, labels = self.prepare_inputs_labels_for_multimodal(input_ids, attention_mask, past_key_values, labels, images) | |
| return super().forward( | |
| input_ids, | |
| past_key_values=past_key_values, | |
| attention_mask=attention_mask, | |
| inputs_embeds=inputs_embeds, | |
| labels=labels, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs): | |
| images = kwargs.pop("images", None) | |
| _inputs = super().prepare_inputs_for_generation( | |
| input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs | |
| ) | |
| _inputs['images'] = images | |
| return _inputs | |
| AutoConfig.register("llava_mpt", LlavaMptConfig) | |
| AutoModelForCausalLM.register(LlavaMptConfig, LlavaMptForCausalLM) | |