Spaces:
Runtime error
Runtime error
| from PIL import Image | |
| import gradio as gr | |
| from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler | |
| import torch | |
| torch.backends.cuda.matmul.allow_tf32 = True | |
| import gc | |
| controlnet = [ControlNetModel.from_pretrained("ioclab/connow", torch_dtype=torch.float16, use_safetensors=True),ControlNetModel.from_pretrained( "lllyasviel/control_v11p_sd15_seg" , torch_dtype=torch.float16),] | |
| pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
| "andite/anything-v4.0", | |
| controlnet=controlnet, | |
| torch_dtype=torch.float16, | |
| safety_checker=None, | |
| ) | |
| pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) | |
| # pipe.enable_xformers_memory_efficient_attention() | |
| # pipe.enable_model_cpu_offload() | |
| # pipe.enable_attention_slicing() | |
| def infer( | |
| prompt, | |
| negative_prompt, | |
| conditioning_image, | |
| seg_image, | |
| num_inference_steps=30, | |
| size=768, | |
| guidance_scale=7.0, | |
| seed=1234, | |
| ill=0.6, | |
| seg=1 | |
| ): | |
| conditioning_image = Image.fromarray(conditioning_image) | |
| # conditioning_image = conditioning_image_raw.convert('L') | |
| seg_image= Image.fromarray(seg_image) | |
| g_cpu = torch.Generator() | |
| if seed == -1: | |
| generator = g_cpu.manual_seed(g_cpu.seed()) | |
| else: | |
| generator = g_cpu.manual_seed(seed) | |
| isa = [conditioning_image,seg_image] | |
| output_image = pipe( | |
| prompt, | |
| isa, | |
| height=size, | |
| width=size, | |
| num_inference_steps=num_inference_steps, | |
| generator=generator, | |
| negative_prompt=negative_prompt, | |
| guidance_scale=guidance_scale, | |
| controlnet_conditioning_scale=[ill,seg], | |
| ).images[0] | |
| del conditioning_image, conditioning_image_raw,seg_image | |
| gc.collect() | |
| return output_image | |
| with gr.Blocks() as demo: | |
| gr.Markdown( | |
| """ | |
| # ControlNet on Brightness | |
| This is a demo on ControlNet based on brightness. | |
| """) | |
| with gr.Row(): | |
| with gr.Column(): | |
| prompt = gr.Textbox( | |
| label="Prompt", | |
| ) | |
| negative_prompt = gr.Textbox( | |
| label="Negative Prompt", | |
| ) | |
| conditioning_image = gr.Image( | |
| label="Conditioning Image", | |
| ) | |
| seg_image = gr.Image( | |
| label="(Optional)seg Image", | |
| ) | |
| with gr.Accordion('Advanced options', open=False): | |
| with gr.Row(): | |
| num_inference_steps = gr.Slider( | |
| 10, 40, 20, | |
| step=1, | |
| label="Steps", | |
| ) | |
| size = gr.Slider( | |
| 256, 768, 512, | |
| step=128, | |
| label="Size", | |
| ) | |
| with gr.Row(): | |
| guidance_scale = gr.Slider( | |
| label='Guidance Scale', | |
| minimum=0.1, | |
| maximum=30.0, | |
| value=7.0, | |
| step=0.1 | |
| ) | |
| seed = gr.Slider( | |
| label='Seed', | |
| value=-1, | |
| minimum=-1, | |
| maximum=2147483647, | |
| step=1, | |
| # randomize=True | |
| ) | |
| with gr.Row(): | |
| ill = gr.Slider( | |
| label='controlnet_ILL_scale', | |
| minimum=0, | |
| maximum=1, | |
| value=0.6, | |
| step=0.05 | |
| ) | |
| seg = gr.Slider( | |
| label='controlnet_SEG_scale', | |
| value=1, | |
| minimum=0, | |
| maximum=1, | |
| step=0.1, | |
| # randomize=True | |
| ) | |
| submit_btn = gr.Button( | |
| value="Submit", | |
| variant="primary" | |
| ) | |
| with gr.Column(min_width=300): | |
| output = gr.Image( | |
| label="Result", | |
| ) | |
| submit_btn.click( | |
| fn=infer, | |
| inputs=[ | |
| prompt, negative_prompt, conditioning_image,seg_image, num_inference_steps, size, guidance_scale, seed,ill,seg | |
| ], | |
| outputs=output | |
| ) | |
| gr.Markdown( | |
| """ | |
| * [Dataset](https://huggingface.co/datasets/ioclab/grayscale_image_aesthetic_3M) Note that this was handled extra, and a preview version of the processing is here | |
| [Anime Dataset](https://huggingface.co/datasets/ioclab/lighttestout) [Nature Dataset] (https://huggingface.co/datasets/ioclab/light) | |
| * [Diffusers model](https://huggingface.co/ioclab/connow/tree/main), [Web UI model](https://huggingface.co/ioclab/control_v1u_sd15_illumination_webui) | |
| * [Training Report](https://huggingface.co/ioclab/control_v1u_sd15_illumination_webui), [Doc(Chinese)](https://aigc.ioclab.com/sd-showcase/light_controlnet.html) | |
| """) | |
| demo.launch() |