Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- app.py +40 -0
- final_model.h5 +3 -0
- requirements.txt +4 -0
app.py
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import tensorflow as tf
|
| 3 |
+
import numpy as np
|
| 4 |
+
from PIL import Image
|
| 5 |
+
|
| 6 |
+
# ---------- Load your trained model ----------
|
| 7 |
+
model = tf.keras.models.load_model("final_model.h5")
|
| 8 |
+
|
| 9 |
+
# ---------- Prediction function ----------
|
| 10 |
+
def predict(image):
|
| 11 |
+
# Resize the input image to the size your model expects (update if different)
|
| 12 |
+
img = image.resize((224, 224)) # change size if your model was trained differently
|
| 13 |
+
img_array = np.array(img) / 255.0 # normalize
|
| 14 |
+
|
| 15 |
+
# Expand dimensions for batch
|
| 16 |
+
img_array = np.expand_dims(img_array, axis=0)
|
| 17 |
+
|
| 18 |
+
# Predict
|
| 19 |
+
prediction = model.predict(img_array)[0][0] # assumes binary classification
|
| 20 |
+
|
| 21 |
+
# Convert probability to label
|
| 22 |
+
if prediction > 0.5:
|
| 23 |
+
result = f"🟥 Malignant (Cancer Detected) with {prediction*100:.2f}% confidence"
|
| 24 |
+
else:
|
| 25 |
+
result = f"🟩 Benign (No Cancer) with {(1-prediction)*100:.2f}% confidence"
|
| 26 |
+
|
| 27 |
+
return result
|
| 28 |
+
|
| 29 |
+
# ---------- Define Gradio UI ----------
|
| 30 |
+
demo = gr.Interface(
|
| 31 |
+
fn=predict,
|
| 32 |
+
inputs=gr.Image(type="pil", label="Upload Skin Lesion Image"),
|
| 33 |
+
outputs=gr.Textbox(label="Prediction"),
|
| 34 |
+
title="🧬 Skin Cancer Detection",
|
| 35 |
+
description="Upload a skin lesion image and the model will predict whether it is Benign or Malignant."
|
| 36 |
+
)
|
| 37 |
+
|
| 38 |
+
# ---------- Launch ----------
|
| 39 |
+
if __name__ == "__main__":
|
| 40 |
+
demo.launch()
|
final_model.h5
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8ff8ac00211462b4b533154bae22362e5501838219a1dfb9eecf3bd8121ca533
|
| 3 |
+
size 24526712
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
tensorflow
|
| 2 |
+
opencv-python
|
| 3 |
+
numpy
|
| 4 |
+
gradio
|