Spaces:
Sleeping
Sleeping
Create new file
Browse files- lib/utils/augmentations.py +257 -0
lib/utils/augmentations.py
ADDED
|
@@ -0,0 +1,257 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
|
| 4 |
+
import numpy as np
|
| 5 |
+
import cv2
|
| 6 |
+
import random
|
| 7 |
+
import math
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def augment_hsv(img, hgain=0.5, sgain=0.5, vgain=0.5):
|
| 11 |
+
"""change color hue, saturation, value"""
|
| 12 |
+
r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains
|
| 13 |
+
hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
|
| 14 |
+
dtype = img.dtype # uint8
|
| 15 |
+
|
| 16 |
+
x = np.arange(0, 256, dtype=np.int16)
|
| 17 |
+
lut_hue = ((x * r[0]) % 180).astype(dtype)
|
| 18 |
+
lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
|
| 19 |
+
lut_val = np.clip(x * r[2], 0, 255).astype(dtype)
|
| 20 |
+
|
| 21 |
+
img_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))).astype(dtype)
|
| 22 |
+
cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed
|
| 23 |
+
|
| 24 |
+
# Histogram equalization
|
| 25 |
+
# if random.random() < 0.2:
|
| 26 |
+
# for i in range(3):
|
| 27 |
+
# img[:, :, i] = cv2.equalizeHist(img[:, :, i])
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def random_perspective(combination, targets=(), degrees=10, translate=.1, scale=.1, shear=10, perspective=0.0, border=(0, 0)):
|
| 31 |
+
"""combination of img transform"""
|
| 32 |
+
# torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10))
|
| 33 |
+
# targets = [cls, xyxy]
|
| 34 |
+
img, gray, line = combination
|
| 35 |
+
height = img.shape[0] + border[0] * 2 # shape(h,w,c)
|
| 36 |
+
width = img.shape[1] + border[1] * 2
|
| 37 |
+
|
| 38 |
+
# Center
|
| 39 |
+
C = np.eye(3)
|
| 40 |
+
C[0, 2] = -img.shape[1] / 2 # x translation (pixels)
|
| 41 |
+
C[1, 2] = -img.shape[0] / 2 # y translation (pixels)
|
| 42 |
+
|
| 43 |
+
# Perspective
|
| 44 |
+
P = np.eye(3)
|
| 45 |
+
P[2, 0] = random.uniform(-perspective, perspective) # x perspective (about y)
|
| 46 |
+
P[2, 1] = random.uniform(-perspective, perspective) # y perspective (about x)
|
| 47 |
+
|
| 48 |
+
# Rotation and Scale
|
| 49 |
+
R = np.eye(3)
|
| 50 |
+
a = random.uniform(-degrees, degrees)
|
| 51 |
+
# a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations
|
| 52 |
+
s = random.uniform(1 - scale, 1 + scale)
|
| 53 |
+
# s = 2 ** random.uniform(-scale, scale)
|
| 54 |
+
R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)
|
| 55 |
+
|
| 56 |
+
# Shear
|
| 57 |
+
S = np.eye(3)
|
| 58 |
+
S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg)
|
| 59 |
+
S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg)
|
| 60 |
+
|
| 61 |
+
# Translation
|
| 62 |
+
T = np.eye(3)
|
| 63 |
+
T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width # x translation (pixels)
|
| 64 |
+
T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height # y translation (pixels)
|
| 65 |
+
|
| 66 |
+
# Combined rotation matrix
|
| 67 |
+
M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT
|
| 68 |
+
if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed
|
| 69 |
+
if perspective:
|
| 70 |
+
img = cv2.warpPerspective(img, M, dsize=(width, height), borderValue=(114, 114, 114))
|
| 71 |
+
gray = cv2.warpPerspective(gray, M, dsize=(width, height), borderValue=0)
|
| 72 |
+
line = cv2.warpPerspective(line, M, dsize=(width, height), borderValue=0)
|
| 73 |
+
else: # affine
|
| 74 |
+
img = cv2.warpAffine(img, M[:2], dsize=(width, height), borderValue=(114, 114, 114))
|
| 75 |
+
gray = cv2.warpAffine(gray, M[:2], dsize=(width, height), borderValue=0)
|
| 76 |
+
line = cv2.warpAffine(line, M[:2], dsize=(width, height), borderValue=0)
|
| 77 |
+
|
| 78 |
+
# Visualize
|
| 79 |
+
# import matplotlib.pyplot as plt
|
| 80 |
+
# ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel()
|
| 81 |
+
# ax[0].imshow(img[:, :, ::-1]) # base
|
| 82 |
+
# ax[1].imshow(img2[:, :, ::-1]) # warped
|
| 83 |
+
|
| 84 |
+
# Transform label coordinates
|
| 85 |
+
n = len(targets)
|
| 86 |
+
if n:
|
| 87 |
+
# warp points
|
| 88 |
+
xy = np.ones((n * 4, 3))
|
| 89 |
+
xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1
|
| 90 |
+
xy = xy @ M.T # transform
|
| 91 |
+
if perspective:
|
| 92 |
+
xy = (xy[:, :2] / xy[:, 2:3]).reshape(n, 8) # rescale
|
| 93 |
+
else: # affine
|
| 94 |
+
xy = xy[:, :2].reshape(n, 8)
|
| 95 |
+
|
| 96 |
+
# create new boxes
|
| 97 |
+
x = xy[:, [0, 2, 4, 6]]
|
| 98 |
+
y = xy[:, [1, 3, 5, 7]]
|
| 99 |
+
xy = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
|
| 100 |
+
|
| 101 |
+
# # apply angle-based reduction of bounding boxes
|
| 102 |
+
# radians = a * math.pi / 180
|
| 103 |
+
# reduction = max(abs(math.sin(radians)), abs(math.cos(radians))) ** 0.5
|
| 104 |
+
# x = (xy[:, 2] + xy[:, 0]) / 2
|
| 105 |
+
# y = (xy[:, 3] + xy[:, 1]) / 2
|
| 106 |
+
# w = (xy[:, 2] - xy[:, 0]) * reduction
|
| 107 |
+
# h = (xy[:, 3] - xy[:, 1]) * reduction
|
| 108 |
+
# xy = np.concatenate((x - w / 2, y - h / 2, x + w / 2, y + h / 2)).reshape(4, n).T
|
| 109 |
+
|
| 110 |
+
# clip boxes
|
| 111 |
+
xy[:, [0, 2]] = xy[:, [0, 2]].clip(0, width)
|
| 112 |
+
xy[:, [1, 3]] = xy[:, [1, 3]].clip(0, height)
|
| 113 |
+
|
| 114 |
+
# filter candidates
|
| 115 |
+
i = _box_candidates(box1=targets[:, 1:5].T * s, box2=xy.T)
|
| 116 |
+
targets = targets[i]
|
| 117 |
+
targets[:, 1:5] = xy[i]
|
| 118 |
+
|
| 119 |
+
combination = (img, gray, line)
|
| 120 |
+
return combination, targets
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
def cutout(combination, labels):
|
| 124 |
+
# Applies image cutout augmentation https://arxiv.org/abs/1708.04552
|
| 125 |
+
image, gray = combination
|
| 126 |
+
h, w = image.shape[:2]
|
| 127 |
+
|
| 128 |
+
def bbox_ioa(box1, box2):
|
| 129 |
+
# Returns the intersection over box2 area given box1, box2. box1 is 4, box2 is nx4. boxes are x1y1x2y2
|
| 130 |
+
box2 = box2.transpose()
|
| 131 |
+
|
| 132 |
+
# Get the coordinates of bounding boxes
|
| 133 |
+
b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
|
| 134 |
+
b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
|
| 135 |
+
|
| 136 |
+
# Intersection area
|
| 137 |
+
inter_area = (np.minimum(b1_x2, b2_x2) - np.maximum(b1_x1, b2_x1)).clip(0) * \
|
| 138 |
+
(np.minimum(b1_y2, b2_y2) - np.maximum(b1_y1, b2_y1)).clip(0)
|
| 139 |
+
|
| 140 |
+
# box2 area
|
| 141 |
+
box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + 1e-16
|
| 142 |
+
|
| 143 |
+
# Intersection over box2 area
|
| 144 |
+
return inter_area / box2_area
|
| 145 |
+
|
| 146 |
+
# create random masks
|
| 147 |
+
scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16 # image size fraction
|
| 148 |
+
for s in scales:
|
| 149 |
+
mask_h = random.randint(1, int(h * s))
|
| 150 |
+
mask_w = random.randint(1, int(w * s))
|
| 151 |
+
|
| 152 |
+
# box
|
| 153 |
+
xmin = max(0, random.randint(0, w) - mask_w // 2)
|
| 154 |
+
ymin = max(0, random.randint(0, h) - mask_h // 2)
|
| 155 |
+
xmax = min(w, xmin + mask_w)
|
| 156 |
+
ymax = min(h, ymin + mask_h)
|
| 157 |
+
# print('xmin:{},ymin:{},xmax:{},ymax:{}'.format(xmin,ymin,xmax,ymax))
|
| 158 |
+
|
| 159 |
+
# apply random color mask
|
| 160 |
+
image[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)]
|
| 161 |
+
gray[ymin:ymax, xmin:xmax] = -1
|
| 162 |
+
|
| 163 |
+
# return unobscured labels
|
| 164 |
+
if len(labels) and s > 0.03:
|
| 165 |
+
box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32)
|
| 166 |
+
ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area
|
| 167 |
+
labels = labels[ioa < 0.60] # remove >60% obscured labels
|
| 168 |
+
|
| 169 |
+
return image, gray, labels
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
def letterbox(combination, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True):
|
| 173 |
+
"""Resize the input image and automatically padding to suitable shape :https://zhuanlan.zhihu.com/p/172121380"""
|
| 174 |
+
# Resize image to a 32-pixel-multiple rectangle https://github.com/ultralytics/yolov3/issues/232
|
| 175 |
+
img, gray, line = combination
|
| 176 |
+
shape = img.shape[:2] # current shape [height, width]
|
| 177 |
+
if isinstance(new_shape, int):
|
| 178 |
+
new_shape = (new_shape, new_shape)
|
| 179 |
+
|
| 180 |
+
# Scale ratio (new / old)
|
| 181 |
+
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
|
| 182 |
+
if not scaleup: # only scale down, do not scale up (for better test mAP)
|
| 183 |
+
r = min(r, 1.0)
|
| 184 |
+
|
| 185 |
+
# Compute padding
|
| 186 |
+
ratio = r, r # width, height ratios
|
| 187 |
+
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
|
| 188 |
+
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
|
| 189 |
+
if auto: # minimum rectangle
|
| 190 |
+
dw, dh = np.mod(dw, 32), np.mod(dh, 32) # wh padding
|
| 191 |
+
elif scaleFill: # stretch
|
| 192 |
+
dw, dh = 0.0, 0.0
|
| 193 |
+
new_unpad = (new_shape[1], new_shape[0])
|
| 194 |
+
ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
|
| 195 |
+
|
| 196 |
+
dw /= 2 # divide padding into 2 sides
|
| 197 |
+
dh /= 2
|
| 198 |
+
|
| 199 |
+
if shape[::-1] != new_unpad: # resize
|
| 200 |
+
img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
|
| 201 |
+
gray = cv2.resize(gray, new_unpad, interpolation=cv2.INTER_LINEAR)
|
| 202 |
+
line = cv2.resize(line, new_unpad, interpolation=cv2.INTER_LINEAR)
|
| 203 |
+
|
| 204 |
+
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
|
| 205 |
+
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
|
| 206 |
+
|
| 207 |
+
img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
|
| 208 |
+
gray = cv2.copyMakeBorder(gray, top, bottom, left, right, cv2.BORDER_CONSTANT, value=0) # add border
|
| 209 |
+
line = cv2.copyMakeBorder(line, top, bottom, left, right, cv2.BORDER_CONSTANT, value=0) # add border
|
| 210 |
+
# print(img.shape)
|
| 211 |
+
|
| 212 |
+
combination = (img, gray, line)
|
| 213 |
+
return combination, ratio, (dw, dh)
|
| 214 |
+
|
| 215 |
+
def letterbox_for_img(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True):
|
| 216 |
+
# Resize image to a 32-pixel-multiple rectangle https://github.com/ultralytics/yolov3/issues/232
|
| 217 |
+
shape = img.shape[:2] # current shape [height, width]
|
| 218 |
+
if isinstance(new_shape, int):
|
| 219 |
+
new_shape = (new_shape, new_shape)
|
| 220 |
+
|
| 221 |
+
# Scale ratio (new / old)
|
| 222 |
+
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
|
| 223 |
+
if not scaleup: # only scale down, do not scale up (for better test mAP)
|
| 224 |
+
r = min(r, 1.0)
|
| 225 |
+
|
| 226 |
+
# Compute padding
|
| 227 |
+
ratio = r, r # width, height ratios
|
| 228 |
+
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
|
| 229 |
+
|
| 230 |
+
|
| 231 |
+
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
|
| 232 |
+
|
| 233 |
+
if auto: # minimum rectangle
|
| 234 |
+
dw, dh = np.mod(dw, 32), np.mod(dh, 32) # wh padding
|
| 235 |
+
|
| 236 |
+
elif scaleFill: # stretch
|
| 237 |
+
dw, dh = 0.0, 0.0
|
| 238 |
+
new_unpad = (new_shape[1], new_shape[0])
|
| 239 |
+
ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
|
| 240 |
+
|
| 241 |
+
dw /= 2 # divide padding into 2 sides
|
| 242 |
+
dh /= 2
|
| 243 |
+
if shape[::-1] != new_unpad: # resize
|
| 244 |
+
img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_AREA)
|
| 245 |
+
|
| 246 |
+
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
|
| 247 |
+
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
|
| 248 |
+
img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
|
| 249 |
+
return img, ratio, (dw, dh)
|
| 250 |
+
|
| 251 |
+
|
| 252 |
+
def _box_candidates(box1, box2, wh_thr=2, ar_thr=20, area_thr=0.1): # box1(4,n), box2(4,n)
|
| 253 |
+
# Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio
|
| 254 |
+
w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
|
| 255 |
+
w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
|
| 256 |
+
ar = np.maximum(w2 / (h2 + 1e-16), h2 / (w2 + 1e-16)) # aspect ratio
|
| 257 |
+
return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + 1e-16) > area_thr) & (ar < ar_thr) # candidates
|