Spaces:
Sleeping
Sleeping
Create new file
Browse files- utils/datasets.py +100 -0
utils/datasets.py
ADDED
|
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import argparse
|
| 3 |
+
import sys
|
| 4 |
+
import time
|
| 5 |
+
|
| 6 |
+
sys.path.append('./') # to run '$ python *.py' files in subdirectories
|
| 7 |
+
|
| 8 |
+
import torch
|
| 9 |
+
import torch.nn as nn
|
| 10 |
+
|
| 11 |
+
import models
|
| 12 |
+
from models.experimental import attempt_load
|
| 13 |
+
from utils.activations import Hardswish, SiLU
|
| 14 |
+
from utils.general import set_logging, check_img_size
|
| 15 |
+
from utils.torch_utils import select_device
|
| 16 |
+
|
| 17 |
+
if __name__ == '__main__':
|
| 18 |
+
parser = argparse.ArgumentParser()
|
| 19 |
+
parser.add_argument('--weights', type=str, default='./yolor-csp-c.pt', help='weights path')
|
| 20 |
+
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size') # height, width
|
| 21 |
+
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
|
| 22 |
+
parser.add_argument('--dynamic', action='store_true', help='dynamic ONNX axes')
|
| 23 |
+
parser.add_argument('--grid', action='store_true', help='export Detect() layer grid')
|
| 24 |
+
parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
| 25 |
+
opt = parser.parse_args()
|
| 26 |
+
opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand
|
| 27 |
+
print(opt)
|
| 28 |
+
set_logging()
|
| 29 |
+
t = time.time()
|
| 30 |
+
|
| 31 |
+
# Load PyTorch model
|
| 32 |
+
device = select_device(opt.device)
|
| 33 |
+
model = attempt_load(opt.weights, map_location=device) # load FP32 model
|
| 34 |
+
labels = model.names
|
| 35 |
+
|
| 36 |
+
# Checks
|
| 37 |
+
gs = int(max(model.stride)) # grid size (max stride)
|
| 38 |
+
opt.img_size = [check_img_size(x, gs) for x in opt.img_size] # verify img_size are gs-multiples
|
| 39 |
+
|
| 40 |
+
# Input
|
| 41 |
+
img = torch.zeros(opt.batch_size, 3, *opt.img_size).to(device) # image size(1,3,320,192) iDetection
|
| 42 |
+
|
| 43 |
+
# Update model
|
| 44 |
+
for k, m in model.named_modules():
|
| 45 |
+
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
|
| 46 |
+
if isinstance(m, models.common.Conv): # assign export-friendly activations
|
| 47 |
+
if isinstance(m.act, nn.Hardswish):
|
| 48 |
+
m.act = Hardswish()
|
| 49 |
+
elif isinstance(m.act, nn.SiLU):
|
| 50 |
+
m.act = SiLU()
|
| 51 |
+
# elif isinstance(m, models.yolo.Detect):
|
| 52 |
+
# m.forward = m.forward_export # assign forward (optional)
|
| 53 |
+
model.model[-1].export = not opt.grid # set Detect() layer grid export
|
| 54 |
+
y = model(img) # dry run
|
| 55 |
+
|
| 56 |
+
# TorchScript export
|
| 57 |
+
try:
|
| 58 |
+
print('\nStarting TorchScript export with torch %s...' % torch.__version__)
|
| 59 |
+
f = opt.weights.replace('.pt', '.torchscript.pt') # filename
|
| 60 |
+
ts = torch.jit.trace(model, img, strict=False)
|
| 61 |
+
ts.save(f)
|
| 62 |
+
print('TorchScript export success, saved as %s' % f)
|
| 63 |
+
except Exception as e:
|
| 64 |
+
print('TorchScript export failure: %s' % e)
|
| 65 |
+
|
| 66 |
+
# ONNX export
|
| 67 |
+
try:
|
| 68 |
+
import onnx
|
| 69 |
+
|
| 70 |
+
print('\nStarting ONNX export with onnx %s...' % onnx.__version__)
|
| 71 |
+
f = opt.weights.replace('.pt', '.onnx') # filename
|
| 72 |
+
torch.onnx.export(model, img, f, verbose=False, opset_version=12, input_names=['images'],
|
| 73 |
+
output_names=['classes', 'boxes'] if y is None else ['output'],
|
| 74 |
+
dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'}, # size(1,3,640,640)
|
| 75 |
+
'output': {0: 'batch', 2: 'y', 3: 'x'}} if opt.dynamic else None)
|
| 76 |
+
|
| 77 |
+
# Checks
|
| 78 |
+
onnx_model = onnx.load(f) # load onnx model
|
| 79 |
+
onnx.checker.check_model(onnx_model) # check onnx model
|
| 80 |
+
# print(onnx.helper.printable_graph(onnx_model.graph)) # print a human readable model
|
| 81 |
+
print('ONNX export success, saved as %s' % f)
|
| 82 |
+
except Exception as e:
|
| 83 |
+
print('ONNX export failure: %s' % e)
|
| 84 |
+
|
| 85 |
+
# CoreML export
|
| 86 |
+
try:
|
| 87 |
+
import coremltools as ct
|
| 88 |
+
|
| 89 |
+
print('\nStarting CoreML export with coremltools %s...' % ct.__version__)
|
| 90 |
+
# convert model from torchscript and apply pixel scaling as per detect.py
|
| 91 |
+
model = ct.convert(ts, inputs=[ct.ImageType(name='image', shape=img.shape, scale=1 / 255.0, bias=[0, 0, 0])])
|
| 92 |
+
f = opt.weights.replace('.pt', '.mlmodel') # filename
|
| 93 |
+
model.save(f)
|
| 94 |
+
print('CoreML export success, saved as %s' % f)
|
| 95 |
+
except Exception as e:
|
| 96 |
+
print('CoreML export failure: %s' % e)
|
| 97 |
+
|
| 98 |
+
# Finish
|
| 99 |
+
print('\nExport complete (%.2fs). Visualize with https://github.com/lutzroeder/netron.' % (time.time() - t))
|
| 100 |
+
|