Spaces:
Sleeping
Sleeping
Update utils/functions.py
Browse files- utils/functions.py +522 -0
utils/functions.py
CHANGED
|
@@ -0,0 +1,522 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
|
| 3 |
+
import datetime
|
| 4 |
+
import logging
|
| 5 |
+
import os
|
| 6 |
+
import platform
|
| 7 |
+
import subprocess
|
| 8 |
+
import time
|
| 9 |
+
from pathlib import Path
|
| 10 |
+
import re
|
| 11 |
+
import glob
|
| 12 |
+
import random
|
| 13 |
+
import cv2
|
| 14 |
+
import numpy as np
|
| 15 |
+
import torch
|
| 16 |
+
import torchvision
|
| 17 |
+
|
| 18 |
+
logger = logging.getLogger(__name__)
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def git_describe(path=Path(__file__).parent): # path must be a directory
|
| 22 |
+
# return human-readable git description, i.e. v5.0-5-g3e25f1e https://git-scm.com/docs/git-describe
|
| 23 |
+
s = f'git -C {path} describe --tags --long --always'
|
| 24 |
+
try:
|
| 25 |
+
return subprocess.check_output(s, shell=True, stderr=subprocess.STDOUT).decode()[:-1]
|
| 26 |
+
except subprocess.CalledProcessError as e:
|
| 27 |
+
return '' # not a git repository
|
| 28 |
+
|
| 29 |
+
def date_modified(path=__file__):
|
| 30 |
+
# return human-readable file modification date, i.e. '2021-3-26'
|
| 31 |
+
t = datetime.datetime.fromtimestamp(Path(path).stat().st_mtime)
|
| 32 |
+
return f'{t.year}-{t.month}-{t.day}'
|
| 33 |
+
|
| 34 |
+
def select_device(device='', batch_size=None):
|
| 35 |
+
# device = 'cpu' or '0' or '0,1,2,3'
|
| 36 |
+
s = f'YOLOPv2 🚀 {git_describe() or date_modified()} torch {torch.__version__} ' # string
|
| 37 |
+
cpu = device.lower() == 'cpu'
|
| 38 |
+
if cpu:
|
| 39 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # force torch.cuda.is_available() = False
|
| 40 |
+
elif device: # non-cpu device requested
|
| 41 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable
|
| 42 |
+
assert torch.cuda.is_available(), f'CUDA unavailable, invalid device {device} requested' # check availability
|
| 43 |
+
|
| 44 |
+
cuda = not cpu and torch.cuda.is_available()
|
| 45 |
+
if cuda:
|
| 46 |
+
n = torch.cuda.device_count()
|
| 47 |
+
if n > 1 and batch_size: # check that batch_size is compatible with device_count
|
| 48 |
+
assert batch_size % n == 0, f'batch-size {batch_size} not multiple of GPU count {n}'
|
| 49 |
+
space = ' ' * len(s)
|
| 50 |
+
for i, d in enumerate(device.split(',') if device else range(n)):
|
| 51 |
+
p = torch.cuda.get_device_properties(i)
|
| 52 |
+
s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / 1024 ** 2}MB)\n" # bytes to MB
|
| 53 |
+
else:
|
| 54 |
+
s += 'CPU\n'
|
| 55 |
+
|
| 56 |
+
logger.info(s.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else s) # emoji-safe
|
| 57 |
+
return torch.device('cuda:0' if cuda else 'cpu')
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
def time_synchronized():
|
| 61 |
+
# pytorch-accurate time
|
| 62 |
+
if torch.cuda.is_available():
|
| 63 |
+
torch.cuda.synchronize()
|
| 64 |
+
return time.time()
|
| 65 |
+
|
| 66 |
+
def plot_one_box(x, img, color=None, label=None, line_thickness=3):
|
| 67 |
+
# Plots one bounding box on image img
|
| 68 |
+
tl = line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1 # line/font thickness
|
| 69 |
+
color = color or [random.randint(0, 255) for _ in range(3)]
|
| 70 |
+
c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
|
| 71 |
+
cv2.rectangle(img, c1, c2, [0,255,255], thickness=2, lineType=cv2.LINE_AA)
|
| 72 |
+
if label:
|
| 73 |
+
tf = max(tl - 1, 1) # font thickness
|
| 74 |
+
t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
|
| 75 |
+
c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
|
| 76 |
+
|
| 77 |
+
class SegmentationMetric(object):
|
| 78 |
+
'''
|
| 79 |
+
imgLabel [batch_size, height(144), width(256)]
|
| 80 |
+
confusionMatrix [[0(TN),1(FP)],
|
| 81 |
+
[2(FN),3(TP)]]
|
| 82 |
+
'''
|
| 83 |
+
def __init__(self, numClass):
|
| 84 |
+
self.numClass = numClass
|
| 85 |
+
self.confusionMatrix = np.zeros((self.numClass,)*2)
|
| 86 |
+
|
| 87 |
+
def pixelAccuracy(self):
|
| 88 |
+
# return all class overall pixel accuracy
|
| 89 |
+
# acc = (TP + TN) / (TP + TN + FP + TN)
|
| 90 |
+
acc = np.diag(self.confusionMatrix).sum() / self.confusionMatrix.sum()
|
| 91 |
+
return acc
|
| 92 |
+
|
| 93 |
+
def lineAccuracy(self):
|
| 94 |
+
Acc = np.diag(self.confusionMatrix) / (self.confusionMatrix.sum(axis=1) + 1e-12)
|
| 95 |
+
return Acc[1]
|
| 96 |
+
|
| 97 |
+
def classPixelAccuracy(self):
|
| 98 |
+
# return each category pixel accuracy(A more accurate way to call it precision)
|
| 99 |
+
# acc = (TP) / TP + FP
|
| 100 |
+
classAcc = np.diag(self.confusionMatrix) / (self.confusionMatrix.sum(axis=0) + 1e-12)
|
| 101 |
+
return classAcc
|
| 102 |
+
|
| 103 |
+
def meanPixelAccuracy(self):
|
| 104 |
+
classAcc = self.classPixelAccuracy()
|
| 105 |
+
meanAcc = np.nanmean(classAcc)
|
| 106 |
+
return meanAcc
|
| 107 |
+
|
| 108 |
+
def meanIntersectionOverUnion(self):
|
| 109 |
+
# Intersection = TP Union = TP + FP + FN
|
| 110 |
+
# IoU = TP / (TP + FP + FN)
|
| 111 |
+
intersection = np.diag(self.confusionMatrix)
|
| 112 |
+
union = np.sum(self.confusionMatrix, axis=1) + np.sum(self.confusionMatrix, axis=0) - np.diag(self.confusionMatrix)
|
| 113 |
+
IoU = intersection / union
|
| 114 |
+
IoU[np.isnan(IoU)] = 0
|
| 115 |
+
mIoU = np.nanmean(IoU)
|
| 116 |
+
return mIoU
|
| 117 |
+
|
| 118 |
+
def IntersectionOverUnion(self):
|
| 119 |
+
intersection = np.diag(self.confusionMatrix)
|
| 120 |
+
union = np.sum(self.confusionMatrix, axis=1) + np.sum(self.confusionMatrix, axis=0) - np.diag(self.confusionMatrix)
|
| 121 |
+
IoU = intersection / union
|
| 122 |
+
IoU[np.isnan(IoU)] = 0
|
| 123 |
+
return IoU[1]
|
| 124 |
+
|
| 125 |
+
def genConfusionMatrix(self, imgPredict, imgLabel):
|
| 126 |
+
# remove classes from unlabeled pixels in gt image and predict
|
| 127 |
+
# print(imgLabel.shape)
|
| 128 |
+
mask = (imgLabel >= 0) & (imgLabel < self.numClass)
|
| 129 |
+
label = self.numClass * imgLabel[mask] + imgPredict[mask]
|
| 130 |
+
count = np.bincount(label, minlength=self.numClass**2)
|
| 131 |
+
confusionMatrix = count.reshape(self.numClass, self.numClass)
|
| 132 |
+
return confusionMatrix
|
| 133 |
+
|
| 134 |
+
def Frequency_Weighted_Intersection_over_Union(self):
|
| 135 |
+
# FWIOU = [(TP+FN)/(TP+FP+TN+FN)] *[TP / (TP + FP + FN)]
|
| 136 |
+
freq = np.sum(self.confusionMatrix, axis=1) / np.sum(self.confusionMatrix)
|
| 137 |
+
iu = np.diag(self.confusionMatrix) / (
|
| 138 |
+
np.sum(self.confusionMatrix, axis=1) + np.sum(self.confusionMatrix, axis=0) -
|
| 139 |
+
np.diag(self.confusionMatrix))
|
| 140 |
+
FWIoU = (freq[freq > 0] * iu[freq > 0]).sum()
|
| 141 |
+
return FWIoU
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
def addBatch(self, imgPredict, imgLabel):
|
| 145 |
+
assert imgPredict.shape == imgLabel.shape
|
| 146 |
+
self.confusionMatrix += self.genConfusionMatrix(imgPredict, imgLabel)
|
| 147 |
+
|
| 148 |
+
def reset(self):
|
| 149 |
+
self.confusionMatrix = np.zeros((self.numClass, self.numClass))
|
| 150 |
+
|
| 151 |
+
class AverageMeter(object):
|
| 152 |
+
"""Computes and stores the average and current value"""
|
| 153 |
+
def __init__(self):
|
| 154 |
+
self.reset()
|
| 155 |
+
|
| 156 |
+
def reset(self):
|
| 157 |
+
self.val = 0
|
| 158 |
+
self.avg = 0
|
| 159 |
+
self.sum = 0
|
| 160 |
+
self.count = 0
|
| 161 |
+
|
| 162 |
+
def update(self, val, n=1):
|
| 163 |
+
self.val = val
|
| 164 |
+
self.sum += val * n
|
| 165 |
+
self.count += n
|
| 166 |
+
self.avg = self.sum / self.count if self.count != 0 else 0
|
| 167 |
+
|
| 168 |
+
def _make_grid(nx=20, ny=20):
|
| 169 |
+
yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
|
| 170 |
+
return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
|
| 171 |
+
|
| 172 |
+
def split_for_trace_model(pred = None, anchor_grid = None):
|
| 173 |
+
z = []
|
| 174 |
+
st = [8,16,32]
|
| 175 |
+
for i in range(3):
|
| 176 |
+
bs, _, ny, nx = pred[i].shape
|
| 177 |
+
pred[i] = pred[i].view(bs, 3, 85, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
|
| 178 |
+
y = pred[i].sigmoid()
|
| 179 |
+
gr = _make_grid(nx, ny).to(pred[i].device)
|
| 180 |
+
y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + gr) * st[i] # xy
|
| 181 |
+
y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * anchor_grid[i] # wh
|
| 182 |
+
z.append(y.view(bs, -1, 85))
|
| 183 |
+
pred = torch.cat(z, 1)
|
| 184 |
+
return pred
|
| 185 |
+
|
| 186 |
+
def show_seg_result(img, result, palette=None,is_demo=False):
|
| 187 |
+
|
| 188 |
+
if palette is None:
|
| 189 |
+
palette = np.random.randint(
|
| 190 |
+
0, 255, size=(3, 3))
|
| 191 |
+
palette[0] = [0, 0, 0]
|
| 192 |
+
palette[1] = [0, 255, 0]
|
| 193 |
+
palette[2] = [255, 0, 0]
|
| 194 |
+
palette = np.array(palette)
|
| 195 |
+
assert palette.shape[0] == 3 # len(classes)
|
| 196 |
+
assert palette.shape[1] == 3
|
| 197 |
+
assert len(palette.shape) == 2
|
| 198 |
+
|
| 199 |
+
if not is_demo:
|
| 200 |
+
color_seg = np.zeros((result.shape[0], result.shape[1], 3), dtype=np.uint8)
|
| 201 |
+
for label, color in enumerate(palette):
|
| 202 |
+
color_seg[result == label, :] = color
|
| 203 |
+
else:
|
| 204 |
+
color_area = np.zeros((result[0].shape[0], result[0].shape[1], 3), dtype=np.uint8)
|
| 205 |
+
|
| 206 |
+
color_area[result[0] == 1] = [0, 255, 0]
|
| 207 |
+
color_area[result[1] ==1] = [255, 0, 0]
|
| 208 |
+
color_seg = color_area
|
| 209 |
+
|
| 210 |
+
# convert to BGR
|
| 211 |
+
color_seg = color_seg[..., ::-1]
|
| 212 |
+
# print(color_seg.shape)
|
| 213 |
+
color_mask = np.mean(color_seg, 2)
|
| 214 |
+
img[color_mask != 0] = img[color_mask != 0] * 0.5 + color_seg[color_mask != 0] * 0.5
|
| 215 |
+
# img = img * 0.5 + color_seg * 0.5
|
| 216 |
+
#img = img.astype(np.uint8)
|
| 217 |
+
#img = cv2.resize(img, (1280,720), interpolation=cv2.INTER_LINEAR)
|
| 218 |
+
return
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
def increment_path(path, exist_ok=True, sep=''):
|
| 222 |
+
# Increment path, i.e. runs/exp --> runs/exp{sep}0, runs/exp{sep}1 etc.
|
| 223 |
+
path = Path(path) # os-agnostic
|
| 224 |
+
if (path.exists() and exist_ok) or (not path.exists()):
|
| 225 |
+
return str(path)
|
| 226 |
+
else:
|
| 227 |
+
dirs = glob.glob(f"{path}{sep}*") # similar paths
|
| 228 |
+
matches = [re.search(rf"%s{sep}(\d+)" % path.stem, d) for d in dirs]
|
| 229 |
+
i = [int(m.groups()[0]) for m in matches if m] # indices
|
| 230 |
+
n = max(i) + 1 if i else 2 # increment number
|
| 231 |
+
return f"{path}{sep}{n}" # update path
|
| 232 |
+
|
| 233 |
+
def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None):
|
| 234 |
+
# Rescale coords (xyxy) from img1_shape to img0_shape
|
| 235 |
+
if ratio_pad is None: # calculate from img0_shape
|
| 236 |
+
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
|
| 237 |
+
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
|
| 238 |
+
else:
|
| 239 |
+
gain = ratio_pad[0][0]
|
| 240 |
+
pad = ratio_pad[1]
|
| 241 |
+
|
| 242 |
+
coords[:, [0, 2]] -= pad[0] # x padding
|
| 243 |
+
coords[:, [1, 3]] -= pad[1] # y padding
|
| 244 |
+
coords[:, :4] /= gain
|
| 245 |
+
clip_coords(coords, img0_shape)
|
| 246 |
+
return coords
|
| 247 |
+
|
| 248 |
+
|
| 249 |
+
def clip_coords(boxes, img_shape):
|
| 250 |
+
# Clip bounding xyxy bounding boxes to image shape (height, width)
|
| 251 |
+
boxes[:, 0].clamp_(0, img_shape[1]) # x1
|
| 252 |
+
boxes[:, 1].clamp_(0, img_shape[0]) # y1
|
| 253 |
+
boxes[:, 2].clamp_(0, img_shape[1]) # x2
|
| 254 |
+
boxes[:, 3].clamp_(0, img_shape[0]) # y2
|
| 255 |
+
|
| 256 |
+
def set_logging(rank=-1):
|
| 257 |
+
logging.basicConfig(
|
| 258 |
+
format="%(message)s",
|
| 259 |
+
level=logging.INFO if rank in [-1, 0] else logging.WARN)
|
| 260 |
+
|
| 261 |
+
def xywh2xyxy(x):
|
| 262 |
+
# Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
|
| 263 |
+
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
| 264 |
+
y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
|
| 265 |
+
y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
|
| 266 |
+
y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x
|
| 267 |
+
y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y
|
| 268 |
+
return y
|
| 269 |
+
|
| 270 |
+
def xyxy2xywh(x):
|
| 271 |
+
# Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right
|
| 272 |
+
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
| 273 |
+
y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center
|
| 274 |
+
y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center
|
| 275 |
+
y[:, 2] = x[:, 2] - x[:, 0] # width
|
| 276 |
+
y[:, 3] = x[:, 3] - x[:, 1] # height
|
| 277 |
+
return y
|
| 278 |
+
|
| 279 |
+
def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, multi_label=False,
|
| 280 |
+
labels=()):
|
| 281 |
+
"""Runs Non-Maximum Suppression (NMS) on inference results
|
| 282 |
+
Returns:
|
| 283 |
+
list of detections, on (n,6) tensor per image [xyxy, conf, cls]
|
| 284 |
+
"""
|
| 285 |
+
|
| 286 |
+
nc = prediction.shape[2] - 5 # number of classes
|
| 287 |
+
xc = prediction[..., 4] > conf_thres # candidates
|
| 288 |
+
|
| 289 |
+
# Settings
|
| 290 |
+
min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height
|
| 291 |
+
max_det = 300 # maximum number of detections per image
|
| 292 |
+
max_nms = 30000 # maximum number of boxes into torchvision.ops.nms()
|
| 293 |
+
time_limit = 10.0 # seconds to quit after
|
| 294 |
+
redundant = True # require redundant detections
|
| 295 |
+
multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img)
|
| 296 |
+
merge = False # use merge-NMS
|
| 297 |
+
|
| 298 |
+
t = time.time()
|
| 299 |
+
output = [torch.zeros((0, 6), device=prediction.device)] * prediction.shape[0]
|
| 300 |
+
for xi, x in enumerate(prediction): # image index, image inference
|
| 301 |
+
# Apply constraints
|
| 302 |
+
# x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height
|
| 303 |
+
x = x[xc[xi]] # confidence
|
| 304 |
+
|
| 305 |
+
# Cat apriori labels if autolabelling
|
| 306 |
+
if labels and len(labels[xi]):
|
| 307 |
+
l = labels[xi]
|
| 308 |
+
v = torch.zeros((len(l), nc + 5), device=x.device)
|
| 309 |
+
v[:, :4] = l[:, 1:5] # box
|
| 310 |
+
v[:, 4] = 1.0 # conf
|
| 311 |
+
v[range(len(l)), l[:, 0].long() + 5] = 1.0 # cls
|
| 312 |
+
x = torch.cat((x, v), 0)
|
| 313 |
+
|
| 314 |
+
# If none remain process next image
|
| 315 |
+
if not x.shape[0]:
|
| 316 |
+
continue
|
| 317 |
+
|
| 318 |
+
# Compute conf
|
| 319 |
+
x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf
|
| 320 |
+
|
| 321 |
+
# Box (center x, center y, width, height) to (x1, y1, x2, y2)
|
| 322 |
+
box = xywh2xyxy(x[:, :4])
|
| 323 |
+
|
| 324 |
+
# Detections matrix nx6 (xyxy, conf, cls)
|
| 325 |
+
if multi_label:
|
| 326 |
+
i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T
|
| 327 |
+
x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)
|
| 328 |
+
else: # best class only
|
| 329 |
+
conf, j = x[:, 5:].max(1, keepdim=True)
|
| 330 |
+
x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres]
|
| 331 |
+
|
| 332 |
+
# Filter by class
|
| 333 |
+
if classes is not None:
|
| 334 |
+
x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
|
| 335 |
+
|
| 336 |
+
# Apply finite constraint
|
| 337 |
+
# if not torch.isfinite(x).all():
|
| 338 |
+
# x = x[torch.isfinite(x).all(1)]
|
| 339 |
+
|
| 340 |
+
# Check shape
|
| 341 |
+
n = x.shape[0] # number of boxes
|
| 342 |
+
if not n: # no boxes
|
| 343 |
+
continue
|
| 344 |
+
elif n > max_nms: # excess boxes
|
| 345 |
+
x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence
|
| 346 |
+
|
| 347 |
+
# Batched NMS
|
| 348 |
+
c = x[:, 5:6] * (0 if agnostic else max_wh) # classes
|
| 349 |
+
boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
|
| 350 |
+
i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
|
| 351 |
+
if i.shape[0] > max_det: # limit detections
|
| 352 |
+
i = i[:max_det]
|
| 353 |
+
if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean)
|
| 354 |
+
# update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
|
| 355 |
+
iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
|
| 356 |
+
weights = iou * scores[None] # box weights
|
| 357 |
+
x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
|
| 358 |
+
if redundant:
|
| 359 |
+
i = i[iou.sum(1) > 1] # require redundancy
|
| 360 |
+
|
| 361 |
+
output[xi] = x[i]
|
| 362 |
+
if (time.time() - t) > time_limit:
|
| 363 |
+
print(f'WARNING: NMS time limit {time_limit}s exceeded')
|
| 364 |
+
break # time limit exceeded
|
| 365 |
+
|
| 366 |
+
return output
|
| 367 |
+
|
| 368 |
+
def box_iou(box1, box2):
|
| 369 |
+
# https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
|
| 370 |
+
"""
|
| 371 |
+
Return intersection-over-union (Jaccard index) of boxes.
|
| 372 |
+
Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
|
| 373 |
+
Arguments:
|
| 374 |
+
box1 (Tensor[N, 4])
|
| 375 |
+
box2 (Tensor[M, 4])
|
| 376 |
+
Returns:
|
| 377 |
+
iou (Tensor[N, M]): the NxM matrix containing the pairwise
|
| 378 |
+
IoU values for every element in boxes1 and boxes2
|
| 379 |
+
"""
|
| 380 |
+
|
| 381 |
+
def box_area(box):
|
| 382 |
+
# box = 4xn
|
| 383 |
+
return (box[2] - box[0]) * (box[3] - box[1])
|
| 384 |
+
|
| 385 |
+
area1 = box_area(box1.T)
|
| 386 |
+
area2 = box_area(box2.T)
|
| 387 |
+
|
| 388 |
+
# inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
|
| 389 |
+
inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
|
| 390 |
+
return inter / (area1[:, None] + area2 - inter) # iou = inter / (area1 + area2 - inter)
|
| 391 |
+
|
| 392 |
+
class LoadImages: # for inference
|
| 393 |
+
def __init__(self, path, img_size=640, stride=32):
|
| 394 |
+
p = str(Path(path).absolute()) # os-agnostic absolute path
|
| 395 |
+
if '*' in p:
|
| 396 |
+
files = sorted(glob.glob(p, recursive=True)) # glob
|
| 397 |
+
elif os.path.isdir(p):
|
| 398 |
+
files = sorted(glob.glob(os.path.join(p, '*.*'))) # dir
|
| 399 |
+
elif os.path.isfile(p):
|
| 400 |
+
files = [p] # files
|
| 401 |
+
else:
|
| 402 |
+
raise Exception(f'ERROR: {p} does not exist')
|
| 403 |
+
|
| 404 |
+
img_formats = ['bmp', 'jpg', 'jpeg', 'png', 'tif', 'tiff', 'dng', 'webp', 'mpo'] # acceptable image suffixes
|
| 405 |
+
vid_formats = ['mov', 'avi', 'mp4', 'mpg', 'mpeg', 'm4v', 'wmv', 'mkv'] # acceptable video suffixes
|
| 406 |
+
images = [x for x in files if x.split('.')[-1].lower() in img_formats]
|
| 407 |
+
videos = [x for x in files if x.split('.')[-1].lower() in vid_formats]
|
| 408 |
+
ni, nv = len(images), len(videos)
|
| 409 |
+
|
| 410 |
+
self.img_size = img_size
|
| 411 |
+
self.stride = stride
|
| 412 |
+
self.files = images + videos
|
| 413 |
+
self.nf = ni + nv # number of files
|
| 414 |
+
self.video_flag = [False] * ni + [True] * nv
|
| 415 |
+
self.mode = 'image'
|
| 416 |
+
if any(videos):
|
| 417 |
+
self.new_video(videos[0]) # new video
|
| 418 |
+
else:
|
| 419 |
+
self.cap = None
|
| 420 |
+
assert self.nf > 0, f'No images or videos found in {p}. ' \
|
| 421 |
+
f'Supported formats are:\nimages: {img_formats}\nvideos: {vid_formats}'
|
| 422 |
+
|
| 423 |
+
def __iter__(self):
|
| 424 |
+
self.count = 0
|
| 425 |
+
return self
|
| 426 |
+
|
| 427 |
+
def __next__(self):
|
| 428 |
+
if self.count == self.nf:
|
| 429 |
+
raise StopIteration
|
| 430 |
+
path = self.files[self.count]
|
| 431 |
+
|
| 432 |
+
if self.video_flag[self.count]:
|
| 433 |
+
# Read video
|
| 434 |
+
self.mode = 'video'
|
| 435 |
+
ret_val, img0 = self.cap.read()
|
| 436 |
+
if not ret_val:
|
| 437 |
+
self.count += 1
|
| 438 |
+
self.cap.release()
|
| 439 |
+
if self.count == self.nf: # last video
|
| 440 |
+
raise StopIteration
|
| 441 |
+
else:
|
| 442 |
+
path = self.files[self.count]
|
| 443 |
+
self.new_video(path)
|
| 444 |
+
ret_val, img0 = self.cap.read()
|
| 445 |
+
|
| 446 |
+
self.frame += 1
|
| 447 |
+
print(f'video {self.count + 1}/{self.nf} ({self.frame}/{self.nframes}) {path}: ', end='')
|
| 448 |
+
|
| 449 |
+
else:
|
| 450 |
+
# Read image
|
| 451 |
+
self.count += 1
|
| 452 |
+
img0 = cv2.imread(path) # BGR
|
| 453 |
+
assert img0 is not None, 'Image Not Found ' + path
|
| 454 |
+
#print(f'image {self.count}/{self.nf} {path}: ', end='')
|
| 455 |
+
|
| 456 |
+
# Padded resize
|
| 457 |
+
img0 = cv2.resize(img0, (1280,720), interpolation=cv2.INTER_LINEAR)
|
| 458 |
+
img = letterbox(img0, self.img_size, stride=self.stride)[0]
|
| 459 |
+
|
| 460 |
+
# Convert
|
| 461 |
+
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
|
| 462 |
+
img = np.ascontiguousarray(img)
|
| 463 |
+
|
| 464 |
+
return path, img, img0, self.cap
|
| 465 |
+
|
| 466 |
+
def new_video(self, path):
|
| 467 |
+
self.frame = 0
|
| 468 |
+
self.cap = cv2.VideoCapture(path)
|
| 469 |
+
self.nframes = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 470 |
+
|
| 471 |
+
def __len__(self):
|
| 472 |
+
return self.nf # number of files
|
| 473 |
+
|
| 474 |
+
def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32):
|
| 475 |
+
# Resize and pad image while meeting stride-multiple constraints
|
| 476 |
+
shape = img.shape[:2] # current shape [height, width]
|
| 477 |
+
if isinstance(new_shape, int):
|
| 478 |
+
new_shape = (new_shape, new_shape)
|
| 479 |
+
#print(sem_img.shape)
|
| 480 |
+
# Scale ratio (new / old)
|
| 481 |
+
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
|
| 482 |
+
|
| 483 |
+
if not scaleup: # only scale down, do not scale up (for better test mAP)
|
| 484 |
+
r = min(r, 1.0)
|
| 485 |
+
|
| 486 |
+
# Compute padding
|
| 487 |
+
ratio = r, r # width, height ratios
|
| 488 |
+
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
|
| 489 |
+
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
|
| 490 |
+
if auto: # minimum rectangle
|
| 491 |
+
dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding
|
| 492 |
+
elif scaleFill: # stretch
|
| 493 |
+
dw, dh = 0.0, 0.0
|
| 494 |
+
new_unpad = (new_shape[1], new_shape[0])
|
| 495 |
+
ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
|
| 496 |
+
|
| 497 |
+
dw /= 2 # divide padding into 2 sides
|
| 498 |
+
dh /= 2
|
| 499 |
+
|
| 500 |
+
if shape[::-1] != new_unpad: # resize
|
| 501 |
+
img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
|
| 502 |
+
|
| 503 |
+
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
|
| 504 |
+
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
|
| 505 |
+
|
| 506 |
+
img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
|
| 507 |
+
|
| 508 |
+
return img, ratio, (dw, dh)
|
| 509 |
+
|
| 510 |
+
def driving_area_mask(seg = None):
|
| 511 |
+
da_predict = seg[:, :, 12:372,:]
|
| 512 |
+
da_seg_mask = torch.nn.functional.interpolate(da_predict, scale_factor=2, mode='bilinear')
|
| 513 |
+
_, da_seg_mask = torch.max(da_seg_mask, 1)
|
| 514 |
+
da_seg_mask = da_seg_mask.int().squeeze().cpu().numpy()
|
| 515 |
+
return da_seg_mask
|
| 516 |
+
|
| 517 |
+
def lane_line_mask(ll = None):
|
| 518 |
+
ll_predict = ll[:, :, 12:372,:]
|
| 519 |
+
ll_seg_mask = torch.nn.functional.interpolate(ll_predict, scale_factor=2, mode='bilinear')
|
| 520 |
+
ll_seg_mask = torch.round(ll_seg_mask).squeeze(1)
|
| 521 |
+
ll_seg_mask = ll_seg_mask.int().squeeze().cpu().numpy()
|
| 522 |
+
return ll_seg_mask
|