Spaces:
Running
Running
Sigrid De los Santos
commited on
Commit
Β·
3b0bca5
1
Parent(s):
c1747ff
debugging for analysis tables
Browse files- app.py +87 -27
- requirements.txt +1 -0
app.py
CHANGED
@@ -1,12 +1,13 @@
|
|
1 |
import os
|
2 |
import sys
|
3 |
import tempfile
|
4 |
-
import time
|
5 |
import streamlit as st
|
6 |
import pandas as pd
|
7 |
import requests
|
8 |
import openai
|
|
|
9 |
|
|
|
10 |
sys.path.append(os.path.join(os.path.dirname(__file__), 'src'))
|
11 |
from main import run_pipeline
|
12 |
|
@@ -51,7 +52,6 @@ if submitted:
|
|
51 |
df.to_csv(tmp_csv.name, index=False)
|
52 |
csv_path = tmp_csv.name
|
53 |
|
54 |
-
spinner_box = st.empty()
|
55 |
log_box = st.empty()
|
56 |
logs = []
|
57 |
|
@@ -60,9 +60,8 @@ if submitted:
|
|
60 |
log_box.code("\n".join(logs))
|
61 |
|
62 |
try:
|
63 |
-
|
64 |
-
|
65 |
-
# === Check OpenAI Key ===
|
66 |
try:
|
67 |
client = openai.OpenAI(api_key=openai_api_key)
|
68 |
client.models.list()
|
@@ -71,7 +70,6 @@ if submitted:
|
|
71 |
log(f"β OpenAI API Key Error: {e}")
|
72 |
st.stop()
|
73 |
|
74 |
-
# === Check Tavily Key ===
|
75 |
try:
|
76 |
response = requests.post(
|
77 |
"https://api.tavily.com/search",
|
@@ -87,9 +85,11 @@ if submitted:
|
|
87 |
log(f"β Tavily API Key Error: {e}")
|
88 |
st.stop()
|
89 |
|
90 |
-
|
91 |
-
|
92 |
-
|
|
|
|
|
93 |
|
94 |
# === Report Tab ===
|
95 |
with tab_report:
|
@@ -98,6 +98,20 @@ if submitted:
|
|
98 |
with open(path, 'r', encoding='utf-8') as f:
|
99 |
html_content = f.read()
|
100 |
st.components.v1.html(html_content, height=600, scrolling=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
else:
|
102 |
st.error("β No reports were generated.")
|
103 |
|
@@ -105,8 +119,10 @@ if submitted:
|
|
105 |
with tab_articles:
|
106 |
st.subheader("π Articles Table")
|
107 |
if not articles_df.empty:
|
108 |
-
st.dataframe(
|
109 |
-
|
|
|
|
|
110 |
st.download_button(
|
111 |
label="β¬οΈ Download Articles CSV",
|
112 |
data=articles_df.to_csv(index=False).encode("utf-8"),
|
@@ -136,17 +152,19 @@ if submitted:
|
|
136 |
st.code("\n".join(logs) if logs else "No logs yet.")
|
137 |
|
138 |
except Exception as e:
|
139 |
-
|
140 |
log_box.error(f"β Error: {e}")
|
141 |
|
142 |
|
143 |
# import os
|
144 |
# import sys
|
145 |
# import tempfile
|
|
|
146 |
# import streamlit as st
|
147 |
# import pandas as pd
|
|
|
|
|
148 |
|
149 |
-
# # Add 'src' to Python path so we can import main.py
|
150 |
# sys.path.append(os.path.join(os.path.dirname(__file__), 'src'))
|
151 |
# from main import run_pipeline
|
152 |
|
@@ -163,7 +181,6 @@ if submitted:
|
|
163 |
# topics_data = []
|
164 |
# with st.form("topics_form"):
|
165 |
# topic_count = st.number_input("How many topics?", min_value=1, max_value=10, value=1, step=1)
|
166 |
-
|
167 |
# for i in range(topic_count):
|
168 |
# col1, col2 = st.columns(2)
|
169 |
# with col1:
|
@@ -171,20 +188,19 @@ if submitted:
|
|
171 |
# with col2:
|
172 |
# days = st.number_input(f"Timespan (days)", min_value=1, max_value=30, value=7, key=f"days_{i}")
|
173 |
# topics_data.append({"topic": topic, "timespan_days": days})
|
174 |
-
|
175 |
# submitted = st.form_submit_button("Run Analysis")
|
176 |
|
177 |
# # === Tabs Setup ===
|
178 |
-
# tab_report, tab_articles, tab_insights = st.tabs(["π Report", "π Articles", "π Insights"])
|
179 |
-
# articles_df = pd.DataFrame()
|
180 |
-
# insights_df = pd.DataFrame()
|
181 |
-
# html_paths = []
|
182 |
|
183 |
-
# # === Submission logic ===
|
184 |
# if submitted:
|
185 |
# if not openai_api_key or not tavily_api_key or not all([td['topic'] for td in topics_data]):
|
186 |
# st.warning("Please fill in all fields.")
|
187 |
# else:
|
|
|
|
|
|
|
|
|
188 |
# os.environ["OPENAI_API_KEY"] = openai_api_key
|
189 |
# os.environ["TAVILY_API_KEY"] = tavily_api_key
|
190 |
|
@@ -202,14 +218,38 @@ if submitted:
|
|
202 |
# log_box.code("\n".join(logs))
|
203 |
|
204 |
# try:
|
205 |
-
# spinner_box.markdown("β³
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
|
207 |
-
#
|
208 |
# html_paths, articles_df, insights_df = run_pipeline(csv_path, tavily_api_key, progress_callback=log)
|
209 |
-
|
210 |
# spinner_box.success("β
Analysis complete!")
|
211 |
|
212 |
-
# #
|
213 |
# with tab_report:
|
214 |
# if html_paths:
|
215 |
# for path in html_paths:
|
@@ -219,20 +259,40 @@ if submitted:
|
|
219 |
# else:
|
220 |
# st.error("β No reports were generated.")
|
221 |
|
222 |
-
# #
|
223 |
# with tab_articles:
|
|
|
224 |
# if not articles_df.empty:
|
225 |
-
# st.dataframe(articles_df,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
# else:
|
227 |
# st.info("No articles available.")
|
228 |
|
229 |
-
# #
|
230 |
# with tab_insights:
|
|
|
231 |
# if not insights_df.empty:
|
232 |
# st.dataframe(insights_df, use_container_width=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
233 |
# else:
|
234 |
# st.info("No insights available.")
|
235 |
|
|
|
|
|
|
|
|
|
|
|
236 |
# except Exception as e:
|
237 |
# spinner_box.error("β Failed.")
|
238 |
# log_box.error(f"β Error: {e}")
|
|
|
1 |
import os
|
2 |
import sys
|
3 |
import tempfile
|
|
|
4 |
import streamlit as st
|
5 |
import pandas as pd
|
6 |
import requests
|
7 |
import openai
|
8 |
+
import pdfkit
|
9 |
|
10 |
+
# Add 'src' to Python path
|
11 |
sys.path.append(os.path.join(os.path.dirname(__file__), 'src'))
|
12 |
from main import run_pipeline
|
13 |
|
|
|
52 |
df.to_csv(tmp_csv.name, index=False)
|
53 |
csv_path = tmp_csv.name
|
54 |
|
|
|
55 |
log_box = st.empty()
|
56 |
logs = []
|
57 |
|
|
|
60 |
log_box.code("\n".join(logs))
|
61 |
|
62 |
try:
|
63 |
+
# === Check API Keys ===
|
64 |
+
st.info("π **Checking API Keys...**")
|
|
|
65 |
try:
|
66 |
client = openai.OpenAI(api_key=openai_api_key)
|
67 |
client.models.list()
|
|
|
70 |
log(f"β OpenAI API Key Error: {e}")
|
71 |
st.stop()
|
72 |
|
|
|
73 |
try:
|
74 |
response = requests.post(
|
75 |
"https://api.tavily.com/search",
|
|
|
85 |
log(f"β Tavily API Key Error: {e}")
|
86 |
st.stop()
|
87 |
|
88 |
+
# === Run Analysis with Spinner ===
|
89 |
+
with st.spinner("β³ **Analyzing topics, please wait...**"):
|
90 |
+
html_paths, articles_df, insights_df = run_pipeline(csv_path, tavily_api_key, progress_callback=log)
|
91 |
+
|
92 |
+
st.success("β
Analysis complete!")
|
93 |
|
94 |
# === Report Tab ===
|
95 |
with tab_report:
|
|
|
98 |
with open(path, 'r', encoding='utf-8') as f:
|
99 |
html_content = f.read()
|
100 |
st.components.v1.html(html_content, height=600, scrolling=True)
|
101 |
+
|
102 |
+
# Generate PDF from HTML
|
103 |
+
pdf_path = path.replace(".html", ".pdf")
|
104 |
+
try:
|
105 |
+
pdfkit.from_string(html_content, pdf_path)
|
106 |
+
with open(pdf_path, "rb") as pdf_file:
|
107 |
+
st.download_button(
|
108 |
+
label="β¬οΈ Download Report (PDF)",
|
109 |
+
data=pdf_file,
|
110 |
+
file_name=os.path.basename(pdf_path),
|
111 |
+
mime="application/pdf"
|
112 |
+
)
|
113 |
+
except Exception as e:
|
114 |
+
st.error(f"PDF generation failed: {e}")
|
115 |
else:
|
116 |
st.error("β No reports were generated.")
|
117 |
|
|
|
119 |
with tab_articles:
|
120 |
st.subheader("π Articles Table")
|
121 |
if not articles_df.empty:
|
122 |
+
st.dataframe(
|
123 |
+
articles_df[["Title", "URL", "Summary", "Priority", "Sentiment", "Confidence", "Signal", "Date"]],
|
124 |
+
use_container_width=True
|
125 |
+
)
|
126 |
st.download_button(
|
127 |
label="β¬οΈ Download Articles CSV",
|
128 |
data=articles_df.to_csv(index=False).encode("utf-8"),
|
|
|
152 |
st.code("\n".join(logs) if logs else "No logs yet.")
|
153 |
|
154 |
except Exception as e:
|
155 |
+
st.error("β Failed.")
|
156 |
log_box.error(f"β Error: {e}")
|
157 |
|
158 |
|
159 |
# import os
|
160 |
# import sys
|
161 |
# import tempfile
|
162 |
+
# import time
|
163 |
# import streamlit as st
|
164 |
# import pandas as pd
|
165 |
+
# import requests
|
166 |
+
# import openai
|
167 |
|
|
|
168 |
# sys.path.append(os.path.join(os.path.dirname(__file__), 'src'))
|
169 |
# from main import run_pipeline
|
170 |
|
|
|
181 |
# topics_data = []
|
182 |
# with st.form("topics_form"):
|
183 |
# topic_count = st.number_input("How many topics?", min_value=1, max_value=10, value=1, step=1)
|
|
|
184 |
# for i in range(topic_count):
|
185 |
# col1, col2 = st.columns(2)
|
186 |
# with col1:
|
|
|
188 |
# with col2:
|
189 |
# days = st.number_input(f"Timespan (days)", min_value=1, max_value=30, value=7, key=f"days_{i}")
|
190 |
# topics_data.append({"topic": topic, "timespan_days": days})
|
|
|
191 |
# submitted = st.form_submit_button("Run Analysis")
|
192 |
|
193 |
# # === Tabs Setup ===
|
194 |
+
# tab_report, tab_articles, tab_insights, tab_debug = st.tabs(["π Report", "π Articles", "π Insights", "π Debug"])
|
|
|
|
|
|
|
195 |
|
|
|
196 |
# if submitted:
|
197 |
# if not openai_api_key or not tavily_api_key or not all([td['topic'] for td in topics_data]):
|
198 |
# st.warning("Please fill in all fields.")
|
199 |
# else:
|
200 |
+
# articles_df = pd.DataFrame()
|
201 |
+
# insights_df = pd.DataFrame()
|
202 |
+
# html_paths = []
|
203 |
+
|
204 |
# os.environ["OPENAI_API_KEY"] = openai_api_key
|
205 |
# os.environ["TAVILY_API_KEY"] = tavily_api_key
|
206 |
|
|
|
218 |
# log_box.code("\n".join(logs))
|
219 |
|
220 |
# try:
|
221 |
+
# spinner_box.markdown("β³ Checking API keys...")
|
222 |
+
|
223 |
+
# # === Check OpenAI Key ===
|
224 |
+
# try:
|
225 |
+
# client = openai.OpenAI(api_key=openai_api_key)
|
226 |
+
# client.models.list()
|
227 |
+
# log("β
OpenAI API key is valid.")
|
228 |
+
# except Exception as e:
|
229 |
+
# log(f"β OpenAI API Key Error: {e}")
|
230 |
+
# st.stop()
|
231 |
+
|
232 |
+
# # === Check Tavily Key ===
|
233 |
+
# try:
|
234 |
+
# response = requests.post(
|
235 |
+
# "https://api.tavily.com/search",
|
236 |
+
# headers={"Authorization": f"Bearer {tavily_api_key}"},
|
237 |
+
# json={"query": "test", "days": 1, "max_results": 1}
|
238 |
+
# )
|
239 |
+
# if response.status_code == 200:
|
240 |
+
# log("β
Tavily API key is valid.")
|
241 |
+
# else:
|
242 |
+
# log(f"β Tavily Key Error: {response.status_code} {response.text}")
|
243 |
+
# st.stop()
|
244 |
+
# except Exception as e:
|
245 |
+
# log(f"β Tavily API Key Error: {e}")
|
246 |
+
# st.stop()
|
247 |
|
248 |
+
# spinner_box.markdown("β³ Running analysis pipeline...")
|
249 |
# html_paths, articles_df, insights_df = run_pipeline(csv_path, tavily_api_key, progress_callback=log)
|
|
|
250 |
# spinner_box.success("β
Analysis complete!")
|
251 |
|
252 |
+
# # === Report Tab ===
|
253 |
# with tab_report:
|
254 |
# if html_paths:
|
255 |
# for path in html_paths:
|
|
|
259 |
# else:
|
260 |
# st.error("β No reports were generated.")
|
261 |
|
262 |
+
# # === Articles Tab ===
|
263 |
# with tab_articles:
|
264 |
+
# st.subheader("π Articles Table")
|
265 |
# if not articles_df.empty:
|
266 |
+
# st.dataframe(articles_df[["Title", "URL", "Summary", "Priority", "Sentiment", "Confidence", "Signal", "Date"]],
|
267 |
+
# use_container_width=True)
|
268 |
+
# st.download_button(
|
269 |
+
# label="β¬οΈ Download Articles CSV",
|
270 |
+
# data=articles_df.to_csv(index=False).encode("utf-8"),
|
271 |
+
# file_name="articles.csv",
|
272 |
+
# mime="text/csv"
|
273 |
+
# )
|
274 |
# else:
|
275 |
# st.info("No articles available.")
|
276 |
|
277 |
+
# # === Insights Tab ===
|
278 |
# with tab_insights:
|
279 |
+
# st.subheader("π Top Investment Insights")
|
280 |
# if not insights_df.empty:
|
281 |
# st.dataframe(insights_df, use_container_width=True)
|
282 |
+
# st.download_button(
|
283 |
+
# label="β¬οΈ Download Insights CSV",
|
284 |
+
# data=insights_df.to_csv(index=False).encode("utf-8"),
|
285 |
+
# file_name="insights.csv",
|
286 |
+
# mime="text/csv"
|
287 |
+
# )
|
288 |
# else:
|
289 |
# st.info("No insights available.")
|
290 |
|
291 |
+
# # === Debug Tab ===
|
292 |
+
# with tab_debug:
|
293 |
+
# st.subheader("π Debug Log")
|
294 |
+
# st.code("\n".join(logs) if logs else "No logs yet.")
|
295 |
+
|
296 |
# except Exception as e:
|
297 |
# spinner_box.error("β Failed.")
|
298 |
# log_box.error(f"β Error: {e}")
|
requirements.txt
CHANGED
@@ -87,3 +87,4 @@ urllib3==2.5.0
|
|
87 |
zipp==3.23.0
|
88 |
zstandard==0.23.0
|
89 |
xhtml2pdf
|
|
|
|
87 |
zipp==3.23.0
|
88 |
zstandard==0.23.0
|
89 |
xhtml2pdf
|
90 |
+
pdfkit
|