import gradio as gr import torch import numpy as np from functools import partial from typing import Optional from shap_e.diffusion.gaussian_diffusion import diffusion_from_config from shap_e.diffusion.sample import sample_latents from shap_e.models.download import load_model, load_config, load_checkpoint from shap_e.models.configs import model_from_config from shap_e.util.notebooks import create_pan_cameras, decode_latent_mesh import trimesh import torch.nn as nn import os import random import warnings from huggingface_hub import hf_hub_download import hashlib import spaces import sys sys.tracebacklimit = 0 def set_seed(seed=1024): random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) if torch.cuda.is_available(): torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) torch.backends.cudnn.deterministic = True def freeze_params(params): for param in params: param.requires_grad = False class Blocks(gr.Blocks): def __init__( self, theme: str = "default", analytics_enabled: Optional[bool] = None, mode: str = "blocks", title: str = "Gradio", css: Optional[str] = None, **kwargs, ): self.extra_configs = { 'thumbnail': kwargs.pop('thumbnail', ''), 'url': kwargs.pop('url', 'https://gradio.app/'), 'creator': kwargs.pop('creator', '@teamGradio'), } super(Blocks, self).__init__(theme, analytics_enabled, mode, title, css, **kwargs) warnings.filterwarnings("ignore") def get_config_file(self): config = super(Blocks, self).get_config_file() for k, v in self.extra_configs.items(): config[k] = v return config def main(): css = """ #img2img_image, #img2img_image > .fixed-height, #img2img_image > .fixed-height > div, #img2img_image > .fixed-height > div > img { height: var(--height) !important; max-height: var(--height) !important; min-height: var(--height) !important; } #paper-info a { color:#008AD7; text-decoration: none; } #paper-info a:hover { cursor: pointer; text-decoration: none; } .tooltip { color: #555; position: relative; display: inline-block; cursor: pointer; } .tooltip .tooltiptext { visibility: hidden; width: 400px; background-color: #555; color: #fff; text-align: center; padding: 5px; border-radius: 5px; position: absolute; z-index: 1; /* Set z-index to 1 */ left: 10px; top: 100%; opacity: 0; transition: opacity 0.3s; } .tooltip:hover .tooltiptext { visibility: visible; opacity: 1; z-index: 9999; /* Set a high z-index value when hovering */ } """ rescale_js = """ function(x) { const root = document.querySelector('gradio-app').shadowRoot || document.querySelector('gradio-app'); let image_scale = parseFloat(root.querySelector('#image_scale input').value) || 1.0; const image_width = root.querySelector('#img2img_image').clientWidth; const target_height = parseInt(image_width * image_scale); document.body.style.setProperty('--height', `${target_height}px`); root.querySelectorAll('button.justify-center.rounded')[0].style.display='none'; root.querySelectorAll('button.justify-center.rounded')[1].style.display='none'; return x; } """ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') print("device:", device) # latent_model = load_model('text300M', device=device) latent_model = model_from_config(load_config('text300M'), device=device) # print(model_name, kwargs) # print(model) latent_model.load_state_dict(load_checkpoint('text300M', device='cpu')) latent_model.eval() print("loaded latent model") latent_model.to(device) # xm = load_model('transmitter', device=device) xm = model_from_config(load_config('transmitter'), device=device) # print(model_name, kwargs) # print(model) xm.load_state_dict(load_checkpoint('transmitter', device='cpu')) xm.eval() print("loaded transmitter") xm.to(device) diffusion = diffusion_from_config(load_config('diffusion')) freeze_params(xm.parameters()) models = dict() initial_noise = dict() noise_start_t = dict() editing_types = ['rainbow', 'santa_hat', 'lego', 'golden', 'wooden', 'cyber'] # prepare models for editing_type in editing_types: tmp_model = model_from_config(load_config('text300M'), device=device) # print(model_name, kwargs) # print(model) # xm = load_model('transmitter', de with torch.no_grad(): new_proj = nn.Linear(1024 * 2, 1024, device=device, dtype=tmp_model.wrapped.input_proj.weight.dtype) new_proj.weight = nn.Parameter(torch.zeros_like(new_proj.weight)) new_proj.weight[:, :1024].copy_(tmp_model.wrapped.input_proj.weight) # new_proj.bias = nn.Parameter(torch.zeros_like(new_proj.bias)) new_proj.bias[:1024].copy_(tmp_model.wrapped.input_proj.bias) tmp_model.wrapped.input_proj = new_proj ckp = torch.load(hf_hub_download(repo_id='silentchen/Shap_Editor', subfolder='single', filename='{}.pt'.format(editing_type)), map_location='cpu') tmp_model.load_state_dict(ckp['model']) tmp_model.eval() print("loaded latent model") tmp_model.to(device) noise_initial = ckp['initial_noise']['noise'].to(device) initial_noise[editing_type] = noise_initial noise_start_t[editing_type] = ckp['t_start'] models[editing_type] = tmp_model @torch.no_grad() def optimize_all(prompt, instruction, rand_seed): print("Optimizing all") state = {} out_gen_1, out_gen_2, out_gen_3, out_gen_4, state = generate_3d_with_shap_e(prompt, rand_seed, state) edited_1, edited_2, edited_3, edited_4, state = _3d_editing(instruction, rand_seed, state) print(state) return out_gen_1, out_gen_2, out_gen_3, out_gen_4, edited_1, edited_2, edited_3, edited_4 @spaces.GPU(duration=180) @torch.no_grad() def generate_3d_with_shap_e(prompt, rand_seed, state): print("Check if I can use partial") set_seed(rand_seed) batch_size = 4 guidance_scale = 15.0 xm.renderer.volume.bbox_max = torch.tensor([1.0, 1.0, 1.0]).to(device) xm.renderer.volume.bbox_min = torch.tensor([-1.0, -1.0, -1.0]).to(device) xm.renderer.volume.bbox = torch.stack([xm.renderer.volume.bbox_min, xm.renderer.volume.bbox_max]) print("prompt: ", prompt, "rand_seed: ", rand_seed, "state:", state) latents = sample_latents( batch_size=batch_size, model=latent_model, diffusion=diffusion, guidance_scale=guidance_scale, model_kwargs=dict(texts=[prompt] * batch_size), progress=True, clip_denoised=True, use_fp16=True, use_karras=True, karras_steps=64, sigma_min=1e-3, sigma_max=160, s_churn=0, ) prompt_hash = str(hashlib.sha256((prompt + '_' + str(rand_seed)).encode('utf-8')).hexdigest()) mesh_path = [] output_path = './logs' os.makedirs(os.path.join(output_path, 'source'), exist_ok=True) state['latent'] = [] state['prompt'] = prompt state['rand_seed_1'] = rand_seed for i, latent in enumerate(latents): output_path_tmp = os.path.join(output_path, 'source', '{}_{}.obj'.format(prompt_hash, i)) t_obj = decode_latent_mesh(xm, latent).tri_mesh() with open(output_path_tmp, 'w') as f: t_obj.write_obj(f) mesh = trimesh.load_mesh(output_path_tmp) angle = np.radians(180) axis = [0, 1, 0] rotation_matrix = trimesh.transformations.rotation_matrix(angle, axis) mesh.apply_transform(rotation_matrix) angle = np.radians(90) axis = [1, 0, 0] rotation_matrix = trimesh.transformations.rotation_matrix(angle, axis) mesh.apply_transform(rotation_matrix) output_path_tmp = os.path.join(output_path, 'source', '{}_{}.obj'.format(prompt_hash, i)) mesh.export(output_path_tmp) state['latent'].append(latent.clone().detach().cpu()) mesh_path.append(output_path_tmp) del latents return mesh_path[0], mesh_path[1], mesh_path[2], mesh_path[3], state @spaces.GPU(duration=180) @torch.no_grad() def _3d_editing(instruction, rand_seed, state): set_seed(rand_seed) mesh_path = [] prompt = state['prompt'] rand_seed_1 = state['rand_seed_1'] print("prompt: ", prompt, "rand_seed: ", rand_seed, "instruction:", instruction, "state:", state) prompt_hash = str(hashlib.sha256( (prompt + '_' + str(rand_seed_1) + '_' + instruction + '_' + str(rand_seed)).encode('utf-8')).hexdigest()) if 'santa' in instruction: e_type = 'santa_hat' elif 'rainbow' in instruction: e_type = 'rainbow' elif 'gold' in instruction: e_type = 'golden' elif 'lego' in instruction: e_type = 'lego' elif 'wooden' in instruction: e_type = 'wooden' elif 'cyber' in instruction: e_type = 'cyber' model = models[e_type] print("model", model) # model = load_model('text300M', device=device) # with torch.no_grad(): # new_proj = nn.Linear(1024 * 2, 1024, device=device, dtype=model.wrapped.input_proj.weight.dtype) # new_proj.weight = nn.Parameter(torch.zeros_like(new_proj.weight)) # new_proj.weight[:, :1024].copy_(model.wrapped.input_proj.weight) # # new_proj.bias = nn.Parameter(torch.zeros_like(new_proj.bias)) # new_proj.bias[:1024].copy_(model.wrapped.input_proj.bias) # model.wrapped.input_proj = new_proj # # ckp = torch.load( # hf_hub_download(repo_id='silentchen/Shap_Editor', subfolder='single', filename='{}.pt'.format(e_type)), # map_location='cpu') # model.load_state_dict(ckp['model']) noise_initial = initial_noise[e_type].to(device) noise_start_t_e_type = noise_start_t[e_type] general_save_path = './logs/edited' os.makedirs(general_save_path, exist_ok=True) for i, latent in enumerate(state['latent']): latent = latent.to(device) text_embeddings_clip = model.cached_model_kwargs(1, dict(texts=[instruction])) print("shape of latent: ", latent.clone().unsqueeze(0).shape, "instruction: ", instruction) ref_latent = latent.clone().unsqueeze(0).to(device) t_1 = torch.randint(noise_start_t_e_type, noise_start_t_e_type + 1, (1,), device=device).long() noise_input = diffusion.q_sample(ref_latent, t_1, noise=noise_initial) print("noise_input:", noise_input.device) out_1 = diffusion.p_mean_variance(model, noise_input, t_1, clip_denoised=True, model_kwargs=text_embeddings_clip, condition_latents=ref_latent) updated_latents = out_1['pred_xstart'] if 'santa' in instruction: xm.renderer.volume.bbox_max = torch.tensor([1.0, 1.0, 1.25]).to(device) xm.renderer.volume.bbox_min = torch.tensor([-1.0, -1.0, -1]).to(device) xm.renderer.volume.bbox = torch.stack([xm.renderer.volume.bbox_min, xm.renderer.volume.bbox_max]) else: xm.renderer.volume.bbox_max = torch.tensor([1.0, 1.0, 1.0]).to(device) xm.renderer.volume.bbox_min = torch.tensor([-1.0, -1.0, -1.0]).to(device) xm.renderer.volume.bbox = torch.stack([xm.renderer.volume.bbox_min, xm.renderer.volume.bbox_max]) for latent_idx, updated_latent in enumerate(updated_latents): output_path = os.path.join(general_save_path, '{}_{}.obj'.format(prompt_hash, i)) t = decode_latent_mesh(xm, updated_latent).tri_mesh() with open(output_path, 'w') as f: t.write_obj(f) mesh = trimesh.load_mesh(output_path) angle = np.radians(180) axis = [0, 1, 0] rotation_matrix = trimesh.transformations.rotation_matrix(angle, axis) mesh.apply_transform(rotation_matrix) angle = np.radians(90) axis = [1, 0, 0] rotation_matrix = trimesh.transformations.rotation_matrix(angle, axis) mesh.apply_transform(rotation_matrix) output_path = os.path.join(general_save_path, '{}_{}.obj'.format(prompt_hash, i)) mesh.export(output_path) mesh_path.append(output_path) return mesh_path[0], mesh_path[1], mesh_path[2], mesh_path[3], state # del models # models = None with Blocks( css=css, analytics_enabled=False, title="SHAPE-EDITOR demo", ) as demo: description = """

SHAP-EDITOR: Instruction-guided
Latent 3D Editing in Seconds

[Project Page] [Paper] [GitHub]

""" state = gr.State({}) gr.HTML(description) shap_editor_hint = """Hint:
1. After generating and editing, it takes some time to display the 3D model. Please wait for a while.
2. The original Shap-E is not good at compositional generation. Using prompts contain one object can usually get good results. Please see the original paper for more details.
3. The processing time in the demo including the time of preprocessing, model loading and extracting the mesh, making it slower then reported. Besides, the demo is currently running on A10 which is slower than the tested A6000 GPU.
4. If you don't get satisfying generating/editing results, please try to change the random seed in Advanced Options.
""" gr.HTML(shap_editor_hint) with gr.Column(): with gr.Column(): gr.HTML('Step 1: generate original 3D objects using Shap-E.') prompt = gr.Textbox( label="Text prompt for initial 3D generation", lines=1 ) gen_btn = gr.Button(value='Generate', scale=1) with gr.Column(): gr.HTML('Generated 3D objects') with gr.Row(): out_gen_1 = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], visible=True, label="3D Model 1 (step 1)") out_gen_2 = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], visible=True, label="3D Model 2 (step 1)") out_gen_3 = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], visible=True, label="3D Model 3 (step 1)") out_gen_4 = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], visible=True, label="3D Model 4 (step 1)") with gr.Column(scale=1): gr.HTML('Step 2: apply 3D editing with SHAP-EDITOR.') editing_choice = gr.Dropdown( ["Add a santa hat to it", "Make it look like made of gold", "Make the color of it look like rainbow", "Make it in cyberpunk style", "Make it wooden", "Make it look like make of lego"], value='Add a santa hat to it', multiselect=False, label="Editing effects", info="Select specific editing you want to apply!" ), apply_btn = gr.Button(value='Editing', scale=1) with gr.Column(scale=3): gr.HTML('Edited 3D objects') with gr.Row(): edited_1 = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], visible=True, label="3D Model 1 (step 2)") edited_2 = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], visible=True, label="3D Model 2 (step 2)") edited_3 = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], visible=True, label="3D Model 3 (step 2)") edited_4 = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], visible=True, label="3D Model 4 (step 2)") with gr.Accordion("Advanced Options", open=False): rand_seed = gr.Slider(minimum=0, maximum=1000, step=1, value=445, label="Random seed") gen_btn.click( fn=generate_3d_with_shap_e, inputs=[prompt, rand_seed, state], outputs=[out_gen_1, out_gen_2, out_gen_3, out_gen_4, state], queue=False) apply_btn.click( fn=_3d_editing, inputs=[ editing_choice[0], rand_seed, state ], outputs=[edited_1, edited_2, edited_3, edited_4, state], queue=True ) print("Generate examples...") with gr.Column(): gr.Examples( examples=[ ["a corgi", "Make the color of it look like rainbow", 456, ], ["a penguin", "Make it look like make of lego", 214, ], ], inputs=[prompt, editing_choice[0], rand_seed], outputs=[out_gen_1, out_gen_2, out_gen_3, out_gen_4, edited_1, edited_2, edited_3, edited_4], fn=optimize_all, cache_examples=True, ) demo.queue(max_size=10, api_open=False) demo.launch(share=False, show_api=False, show_error=True) if __name__ == '__main__': main()