Spaces:
Runtime error
Runtime error
Upload 5 files
Browse files- .gitignore +48 -0
- app.py +169 -0
- app2.py +192 -0
- chinook.db +0 -0
- requirements.txt +11 -0
.gitignore
ADDED
|
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Python related
|
| 2 |
+
__pycache__/
|
| 3 |
+
*.py[cod]
|
| 4 |
+
*.pyc
|
| 5 |
+
*.pyo
|
| 6 |
+
*.pyd
|
| 7 |
+
.Python
|
| 8 |
+
build/
|
| 9 |
+
develop-eggs/
|
| 10 |
+
dist/
|
| 11 |
+
downloads/
|
| 12 |
+
eggs/
|
| 13 |
+
.eggs/
|
| 14 |
+
lib/
|
| 15 |
+
lib64/
|
| 16 |
+
parts/
|
| 17 |
+
sdist/
|
| 18 |
+
var/
|
| 19 |
+
*.egg-info/
|
| 20 |
+
.installed.cfg
|
| 21 |
+
*.egg
|
| 22 |
+
|
| 23 |
+
# Virtual environment
|
| 24 |
+
venv/
|
| 25 |
+
ENV/
|
| 26 |
+
|
| 27 |
+
# IDEs and editors
|
| 28 |
+
.vscode/
|
| 29 |
+
.idea/
|
| 30 |
+
*.swp
|
| 31 |
+
*.bak
|
| 32 |
+
*.sublime-workspace
|
| 33 |
+
|
| 34 |
+
# OS generated files
|
| 35 |
+
.DS_Store
|
| 36 |
+
Thumbs.db
|
| 37 |
+
|
| 38 |
+
# Jupyter Notebook
|
| 39 |
+
.ipynb_checkpoints
|
| 40 |
+
|
| 41 |
+
# pytest
|
| 42 |
+
.pytest_cache/
|
| 43 |
+
|
| 44 |
+
# mypy
|
| 45 |
+
.mypy_cache/
|
| 46 |
+
|
| 47 |
+
#env virables:
|
| 48 |
+
.env
|
app.py
ADDED
|
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import re
|
| 3 |
+
import gradio as gr
|
| 4 |
+
from dotenv import load_dotenv
|
| 5 |
+
from langchain_community.utilities import SQLDatabase
|
| 6 |
+
from langchain_openai import ChatOpenAI
|
| 7 |
+
from langchain.chains import create_sql_query_chain
|
| 8 |
+
from langchain_core.output_parsers import StrOutputParser
|
| 9 |
+
from langchain_core.prompts import ChatPromptTemplate
|
| 10 |
+
from langchain_core.runnables import RunnablePassthrough
|
| 11 |
+
from langchain_core.output_parsers.openai_tools import PydanticToolsParser
|
| 12 |
+
from langchain_core.pydantic_v1 import BaseModel, Field
|
| 13 |
+
from typing import List
|
| 14 |
+
import sqlite3
|
| 15 |
+
|
| 16 |
+
# Load environment variables from .env file
|
| 17 |
+
load_dotenv()
|
| 18 |
+
|
| 19 |
+
# Set up the database connection
|
| 20 |
+
db_path = os.path.join(os.path.dirname(__file__), "chinook.db")
|
| 21 |
+
db = SQLDatabase.from_uri(f"sqlite:///{db_path}")
|
| 22 |
+
|
| 23 |
+
# Function to get table info
|
| 24 |
+
def get_table_info(db_path):
|
| 25 |
+
conn = sqlite3.connect(db_path)
|
| 26 |
+
cursor = conn.cursor()
|
| 27 |
+
|
| 28 |
+
# Get all table names
|
| 29 |
+
cursor.execute("SELECT name FROM sqlite_master WHERE type='table';")
|
| 30 |
+
tables = cursor.fetchall()
|
| 31 |
+
|
| 32 |
+
table_info = {}
|
| 33 |
+
for table in tables:
|
| 34 |
+
table_name = table[0]
|
| 35 |
+
cursor.execute(f"PRAGMA table_info({table_name})")
|
| 36 |
+
columns = cursor.fetchall()
|
| 37 |
+
column_names = [column[1] for column in columns]
|
| 38 |
+
table_info[table_name] = column_names
|
| 39 |
+
|
| 40 |
+
conn.close()
|
| 41 |
+
return table_info
|
| 42 |
+
|
| 43 |
+
# Get table info
|
| 44 |
+
table_info = get_table_info(db_path)
|
| 45 |
+
|
| 46 |
+
# Format table info for display
|
| 47 |
+
def format_table_info(table_info):
|
| 48 |
+
info_str = f"Total number of tables: {len(table_info)}\n\n"
|
| 49 |
+
info_str += "Tables and their columns:\n\n"
|
| 50 |
+
for table, columns in table_info.items():
|
| 51 |
+
info_str += f"{table}:\n"
|
| 52 |
+
for column in columns:
|
| 53 |
+
info_str += f" - {column}\n"
|
| 54 |
+
info_str += "\n"
|
| 55 |
+
return info_str
|
| 56 |
+
|
| 57 |
+
# Initialize the language model
|
| 58 |
+
llm = ChatOpenAI(model="gpt-3.5-turbo-0125", temperature=0)
|
| 59 |
+
|
| 60 |
+
class Table(BaseModel):
|
| 61 |
+
"""Table in SQL database."""
|
| 62 |
+
name: str = Field(description="Name of table in SQL database.")
|
| 63 |
+
|
| 64 |
+
# Create the table selection prompt
|
| 65 |
+
table_names = "\n".join(db.get_usable_table_names())
|
| 66 |
+
system = f"""Return the names of ALL the SQL tables that MIGHT be relevant to the user question. \
|
| 67 |
+
The tables are:
|
| 68 |
+
|
| 69 |
+
{table_names}
|
| 70 |
+
|
| 71 |
+
Remember to include ALL POTENTIALLY RELEVANT tables, even if you're not sure that they're needed."""
|
| 72 |
+
|
| 73 |
+
table_prompt = ChatPromptTemplate.from_messages([
|
| 74 |
+
("system", system),
|
| 75 |
+
("human", "{input}"),
|
| 76 |
+
])
|
| 77 |
+
|
| 78 |
+
llm_with_tools = llm.bind_tools([Table])
|
| 79 |
+
output_parser = PydanticToolsParser(tools=[Table])
|
| 80 |
+
|
| 81 |
+
table_chain = table_prompt | llm_with_tools | output_parser
|
| 82 |
+
|
| 83 |
+
# Function to get table names from the output
|
| 84 |
+
def get_table_names(output: List[Table]) -> List[str]:
|
| 85 |
+
return [table.name for table in output]
|
| 86 |
+
|
| 87 |
+
# Create the SQL query chain
|
| 88 |
+
query_chain = create_sql_query_chain(llm, db)
|
| 89 |
+
|
| 90 |
+
# Combine table selection and query generation
|
| 91 |
+
full_chain = (
|
| 92 |
+
RunnablePassthrough.assign(
|
| 93 |
+
table_names_to_use=lambda x: get_table_names(table_chain.invoke({"input": x["question"]}))
|
| 94 |
+
)
|
| 95 |
+
| query_chain
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
# Function to strip markdown formatting from SQL query
|
| 99 |
+
def strip_markdown(text):
|
| 100 |
+
# Remove code block formatting
|
| 101 |
+
text = re.sub(r'```sql\s*|\s*```', '', text)
|
| 102 |
+
# Remove any leading/trailing whitespace
|
| 103 |
+
return text.strip()
|
| 104 |
+
|
| 105 |
+
# Function to execute SQL query
|
| 106 |
+
def execute_query(query: str) -> str:
|
| 107 |
+
try:
|
| 108 |
+
# Strip markdown formatting before executing
|
| 109 |
+
clean_query = strip_markdown(query)
|
| 110 |
+
result = db.run(clean_query)
|
| 111 |
+
return str(result)
|
| 112 |
+
except Exception as e:
|
| 113 |
+
return f"Error executing query: {str(e)}"
|
| 114 |
+
|
| 115 |
+
# Create the answer generation prompt
|
| 116 |
+
answer_prompt = ChatPromptTemplate.from_messages([
|
| 117 |
+
("system", """Given the following user question, corresponding SQL query, and SQL result, answer the user question.
|
| 118 |
+
If there was an error in executing the SQL query, please explain the error and suggest a correction.
|
| 119 |
+
Do not include any SQL code formatting or markdown in your response.
|
| 120 |
+
|
| 121 |
+
Here is the database schema for reference:
|
| 122 |
+
{table_info}"""),
|
| 123 |
+
("human", "Question: {question}\nSQL Query: {query}\nSQL Result: {result}\nAnswer:")
|
| 124 |
+
])
|
| 125 |
+
|
| 126 |
+
# Assemble the final chain
|
| 127 |
+
chain = (
|
| 128 |
+
RunnablePassthrough.assign(query=lambda x: full_chain.invoke(x))
|
| 129 |
+
.assign(result=lambda x: execute_query(x["query"]))
|
| 130 |
+
| answer_prompt
|
| 131 |
+
| llm
|
| 132 |
+
| StrOutputParser()
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
# Function to process user input and generate response
|
| 136 |
+
def process_input(message, history, table_info_str):
|
| 137 |
+
response = chain.invoke({"question": message, "table_info": table_info_str})
|
| 138 |
+
return response
|
| 139 |
+
|
| 140 |
+
# Formatted table info
|
| 141 |
+
formatted_table_info = format_table_info(table_info)
|
| 142 |
+
|
| 143 |
+
# Create Gradio interface
|
| 144 |
+
iface = gr.ChatInterface(
|
| 145 |
+
fn=process_input,
|
| 146 |
+
title="SQL Q&A Chatbot for Chinook Database",
|
| 147 |
+
description="Ask questions about the Chinook music store database and get answers!",
|
| 148 |
+
examples=[
|
| 149 |
+
["Who are the top 5 artists with the most albums in the database?"],
|
| 150 |
+
["What is the total sales amount for each country?"],
|
| 151 |
+
["Which employee has made the highest total sales, and what is the amount?"],
|
| 152 |
+
["What are the top 10 longest tracks in the database, and who are their artists?"],
|
| 153 |
+
["How many customers are there in each country, and what is the total sales for each?"]
|
| 154 |
+
],
|
| 155 |
+
additional_inputs=[
|
| 156 |
+
gr.Textbox(
|
| 157 |
+
label="Database Schema",
|
| 158 |
+
value=formatted_table_info,
|
| 159 |
+
lines=10,
|
| 160 |
+
max_lines=20,
|
| 161 |
+
interactive=False
|
| 162 |
+
)
|
| 163 |
+
],
|
| 164 |
+
theme="soft"
|
| 165 |
+
)
|
| 166 |
+
|
| 167 |
+
# Launch the interface
|
| 168 |
+
if __name__ == "__main__":
|
| 169 |
+
iface.launch()
|
app2.py
ADDED
|
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import re
|
| 3 |
+
import getpass
|
| 4 |
+
from contextlib import contextmanager
|
| 5 |
+
from typing import List
|
| 6 |
+
from operator import itemgetter
|
| 7 |
+
|
| 8 |
+
from sqlalchemy import create_engine, text, inspect
|
| 9 |
+
from sqlalchemy.orm import sessionmaker
|
| 10 |
+
from dotenv import load_dotenv
|
| 11 |
+
|
| 12 |
+
from langchain_community.utilities import SQLDatabase
|
| 13 |
+
from langchain_openai import ChatOpenAI
|
| 14 |
+
from langchain_core.output_parsers.openai_tools import PydanticToolsParser
|
| 15 |
+
from langchain.chains import create_sql_query_chain
|
| 16 |
+
from langchain_core.output_parsers import StrOutputParser
|
| 17 |
+
from langchain_core.prompts import ChatPromptTemplate
|
| 18 |
+
from langchain_core.runnables import RunnablePassthrough
|
| 19 |
+
from langchain_core.pydantic_v1 import BaseModel, Field
|
| 20 |
+
|
| 21 |
+
# Load environment variables from .env file
|
| 22 |
+
load_dotenv()
|
| 23 |
+
|
| 24 |
+
# Set environment variables for API keys
|
| 25 |
+
if not os.environ.get("OPENAI_API_KEY"):
|
| 26 |
+
os.environ["OPENAI_API_KEY"] = getpass.getpass("Enter your OpenAI API key: ")
|
| 27 |
+
|
| 28 |
+
if not os.environ.get("LANGCHAIN_API_KEY"):
|
| 29 |
+
os.environ["LANGCHAIN_API_KEY"] = getpass.getpass("Enter your LangChain API key: ")
|
| 30 |
+
os.environ["LANGCHAIN_TRACING_V2"] = "true"
|
| 31 |
+
|
| 32 |
+
# Setup SQLite Database
|
| 33 |
+
db_path = os.path.join(os.path.dirname(__file__), "chinook.db")
|
| 34 |
+
engine = create_engine(f"sqlite:///{db_path}")
|
| 35 |
+
Session = sessionmaker(bind=engine)
|
| 36 |
+
|
| 37 |
+
db = SQLDatabase.from_uri(f"sqlite:///{db_path}")
|
| 38 |
+
print(db.dialect)
|
| 39 |
+
print(db.get_usable_table_names())
|
| 40 |
+
|
| 41 |
+
with Session() as session:
|
| 42 |
+
result = session.execute(text("SELECT * FROM artists LIMIT 10;")).fetchall()
|
| 43 |
+
print(result)
|
| 44 |
+
|
| 45 |
+
# Initialize LLM
|
| 46 |
+
llm = ChatOpenAI(model="gpt-3.5-turbo-0125")
|
| 47 |
+
|
| 48 |
+
class Table(BaseModel):
|
| 49 |
+
"""Table in SQL database."""
|
| 50 |
+
name: str = Field(description="Name of table in SQL database.")
|
| 51 |
+
|
| 52 |
+
# Function to get schema information
|
| 53 |
+
def get_schema_info():
|
| 54 |
+
inspector = inspect(engine)
|
| 55 |
+
schema_info = {}
|
| 56 |
+
for table_name in inspector.get_table_names():
|
| 57 |
+
columns = inspector.get_columns(table_name)
|
| 58 |
+
schema_info[table_name] = [(column["name"], str(column["type"])) for column in columns]
|
| 59 |
+
return schema_info
|
| 60 |
+
|
| 61 |
+
# Provide schema info to LLM
|
| 62 |
+
schema_info = get_schema_info()
|
| 63 |
+
formatted_schema_info = "\n".join(
|
| 64 |
+
f"Table: {table}\nColumns: {', '.join([f'{col[0]} ({col[1]})' for col in cols])}"
|
| 65 |
+
for table, cols in schema_info.items()
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
system = f"""You are an expert in querying SQL databases. The database schema is as follows:
|
| 69 |
+
|
| 70 |
+
{formatted_schema_info}
|
| 71 |
+
|
| 72 |
+
Given an input question, create a syntactically correct SQL query to run, then look at the results of the query and return the answer to the input question.
|
| 73 |
+
Unless the user specifies in the question a specific number of examples to obtain, query for at most 5 results using the LIMIT clause as per SQLite.
|
| 74 |
+
You can order the results to return the most informative data in the database. Never query for all columns from a table.
|
| 75 |
+
You must query only the columns that are needed to answer the question. Wrap each column name in double quotes (") to denote them as delimited identifiers.
|
| 76 |
+
Pay attention to use only the column names you can see in the tables below. Be careful to not query for columns that do not exist.
|
| 77 |
+
Also, pay attention to which column is in which table. Use the following format:
|
| 78 |
+
|
| 79 |
+
SQLQuery: """
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
table_names = "\n".join(db.get_usable_table_names())
|
| 83 |
+
system_prompt = f"""Return the names of ALL the SQL tables that MIGHT be relevant to the user question. \
|
| 84 |
+
The tables are:
|
| 85 |
+
|
| 86 |
+
{table_names}
|
| 87 |
+
|
| 88 |
+
Remember to include ALL POTENTIALLY RELEVANT tables, even if you're not sure that they're needed."""
|
| 89 |
+
|
| 90 |
+
prompt = ChatPromptTemplate.from_messages(
|
| 91 |
+
[
|
| 92 |
+
("system", system_prompt),
|
| 93 |
+
("human", "{input}"),
|
| 94 |
+
]
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
+
llm_with_tools = llm.bind_tools([Table])
|
| 98 |
+
output_parser = PydanticToolsParser(tools=[Table])
|
| 99 |
+
|
| 100 |
+
table_chain = prompt | llm_with_tools | output_parser
|
| 101 |
+
|
| 102 |
+
# Function to get table names from the output
|
| 103 |
+
def get_table_names(output: List[Table]) -> List[str]:
|
| 104 |
+
return [table.name for table in output]
|
| 105 |
+
|
| 106 |
+
# Create the SQL query chain
|
| 107 |
+
query_chain = create_sql_query_chain(llm, db)
|
| 108 |
+
|
| 109 |
+
# Combine table selection and query generation
|
| 110 |
+
full_chain = (
|
| 111 |
+
RunnablePassthrough.assign(
|
| 112 |
+
table_names_to_use=lambda x: get_table_names(table_chain.invoke({"input": x["question"]}))
|
| 113 |
+
)
|
| 114 |
+
| query_chain
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
# Function to strip markdown formatting from SQL query
|
| 118 |
+
def strip_markdown(text):
|
| 119 |
+
# Remove code block formatting
|
| 120 |
+
text = re.sub(r'```sql\s*|\s*```', '', text)
|
| 121 |
+
# Remove any leading/trailing whitespace
|
| 122 |
+
return text.strip()
|
| 123 |
+
|
| 124 |
+
# Function to execute SQL query
|
| 125 |
+
@contextmanager
|
| 126 |
+
def get_db_session():
|
| 127 |
+
session = Session()
|
| 128 |
+
try:
|
| 129 |
+
yield session
|
| 130 |
+
finally:
|
| 131 |
+
session.close()
|
| 132 |
+
|
| 133 |
+
def execute_sql_query(query: str) -> str:
|
| 134 |
+
try:
|
| 135 |
+
with get_db_session() as session:
|
| 136 |
+
# Strip markdown formatting before executing
|
| 137 |
+
clean_query = strip_markdown(query)
|
| 138 |
+
result = session.execute(text(clean_query)).fetchall()
|
| 139 |
+
return str(result)
|
| 140 |
+
except Exception as e:
|
| 141 |
+
return f"Error executing query: {str(e)}"
|
| 142 |
+
|
| 143 |
+
# Create the answer generation prompt
|
| 144 |
+
answer_prompt = ChatPromptTemplate.from_messages([
|
| 145 |
+
("system", """Given the following user question, corresponding SQL query, and SQL result, answer the user question.
|
| 146 |
+
If there was an error in executing the SQL query, please explain the error and suggest a correction.
|
| 147 |
+
Do not include any SQL code formatting or markdown in your response."""),
|
| 148 |
+
("human", "Question: {question}\nSQL Query: {query}\nSQL Result: {result}\nAnswer:")
|
| 149 |
+
])
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
# Assemble the final chain
|
| 153 |
+
chain = (
|
| 154 |
+
RunnablePassthrough.assign(query=lambda x: full_chain.invoke(x))
|
| 155 |
+
.assign(result=lambda x: execute_sql_query(x["query"]))
|
| 156 |
+
| answer_prompt
|
| 157 |
+
| llm
|
| 158 |
+
| StrOutputParser()
|
| 159 |
+
)
|
| 160 |
+
|
| 161 |
+
# Unit test function
|
| 162 |
+
def unit_test():
|
| 163 |
+
print("Running unit test...")
|
| 164 |
+
|
| 165 |
+
# Example query
|
| 166 |
+
response = chain.invoke({"question": "How many employees are there?"})
|
| 167 |
+
print("Final Answer:", response)
|
| 168 |
+
|
| 169 |
+
print("Unit test completed.")
|
| 170 |
+
|
| 171 |
+
# Main function
|
| 172 |
+
def main():
|
| 173 |
+
# Print schema information
|
| 174 |
+
print("Database Schema Information:")
|
| 175 |
+
print(formatted_schema_info)
|
| 176 |
+
|
| 177 |
+
# Run unit test
|
| 178 |
+
unit_test()
|
| 179 |
+
|
| 180 |
+
# Continuously ask the user for queries until "quit" is entered
|
| 181 |
+
while True:
|
| 182 |
+
user_question = input("Please enter your query (or type 'quit' to exit): ")
|
| 183 |
+
if user_question.lower() == 'quit':
|
| 184 |
+
print("Exiting the program.")
|
| 185 |
+
break
|
| 186 |
+
|
| 187 |
+
# Process user's query
|
| 188 |
+
response = chain.invoke({"question": user_question})
|
| 189 |
+
print("Final Answer:", response)
|
| 190 |
+
|
| 191 |
+
if __name__ == "__main__":
|
| 192 |
+
main()
|
chinook.db
ADDED
|
Binary file (885 kB). View file
|
|
|
requirements.txt
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
langchain
|
| 2 |
+
langchain-community
|
| 3 |
+
langchain-core
|
| 4 |
+
langchain-openai
|
| 5 |
+
langgraph
|
| 6 |
+
openai
|
| 7 |
+
faiss-cpu
|
| 8 |
+
SQLAlchemy
|
| 9 |
+
python-dotenv
|
| 10 |
+
gradio
|
| 11 |
+
langsmith
|