Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,190 +1,188 @@
|
|
1 |
-
# Importing required libraries
|
2 |
-
import json
|
3 |
-
import subprocess
|
4 |
-
from llama_cpp import Llama
|
5 |
-
from llama_cpp_agent import LlamaCppAgent
|
6 |
-
from llama_cpp_agent import MessagesFormatterType
|
7 |
-
from llama_cpp_agent.providers import LlamaCppPythonProvider
|
8 |
-
from llama_cpp_agent.chat_history import BasicChatHistory
|
9 |
-
from llama_cpp_agent.chat_history.messages import Roles
|
10 |
-
import gradio as gr
|
11 |
-
from huggingface_hub import hf_hub_download
|
12 |
-
|
13 |
-
|
14 |
-
# Download gguf model files
|
15 |
-
llm = None
|
16 |
-
llm_model = None
|
17 |
-
|
18 |
-
hf_hub_download(
|
19 |
-
repo_id="bartowski/Dolphin3.0-Llama3.2-1B-GGUF",
|
20 |
-
filename="Dolphin3.0-Llama3.2-1B-Q6_K.gguf",
|
21 |
-
local_dir="./models",
|
22 |
-
)
|
23 |
-
hf_hub_download(
|
24 |
-
repo_id="bartowski/Dolphin3.0-Qwen2.5-1.5B-GGUF",
|
25 |
-
filename="Dolphin3.0-Qwen2.5-1.5B-Q6_K.gguf",
|
26 |
-
local_dir="./models",
|
27 |
-
)
|
28 |
-
hf_hub_download(
|
29 |
-
repo_id="bartowski/Dolphin3.0-Qwen2.5-0.5B-GGUF",
|
30 |
-
filename="Dolphin3.0-Qwen2.5-0.5B-Q6_K.gguf",
|
31 |
-
local_dir="./models",
|
32 |
-
)
|
33 |
-
|
34 |
-
# Set the title and description
|
35 |
-
title = "Dolphin-3 Llama.cpp 🐬"
|
36 |
-
description = """Dolphin 3.0 is a powerful, general-purpose local AI model designed for coding, math, and various other tasks, aiming similar to the models like ChatGPT and Claude."""
|
37 |
-
examples = [
|
38 |
-
["Provide a historical fact about the capital of France."],
|
39 |
-
["Suggest a three-day itinerary for exploring Tokyo and nearby areas?"],
|
40 |
-
["Can you write a short, imaginative story about exploring a forest?"],
|
41 |
-
]
|
42 |
-
|
43 |
-
|
44 |
-
def respond(
|
45 |
-
message,
|
46 |
-
history: list[tuple[str, str]],
|
47 |
-
model,
|
48 |
-
system_message,
|
49 |
-
max_tokens,
|
50 |
-
temperature,
|
51 |
-
top_p,
|
52 |
-
top_k,
|
53 |
-
repeat_penalty,
|
54 |
-
):
|
55 |
-
"""
|
56 |
-
Respond to a message using the Dolphin-3 model via Llama.cpp.
|
57 |
-
|
58 |
-
Args:
|
59 |
-
- message (str): The message to respond to.
|
60 |
-
- history (list[tuple[str, str]]): The chat history.
|
61 |
-
- model (str): The model to use.
|
62 |
-
- max_tokens (int): The maximum number of tokens to generate.
|
63 |
-
- temperature (float): The temperature of the model.
|
64 |
-
- top_p (float): The top-p of the model.
|
65 |
-
- top_k (int): The top-k of the model.
|
66 |
-
- repeat_penalty (float): The repetition penalty of the model.
|
67 |
-
|
68 |
-
Returns:
|
69 |
-
str: The response to the message.
|
70 |
-
"""
|
71 |
-
# Load the global variables
|
72 |
-
global llm
|
73 |
-
global llm_model
|
74 |
-
|
75 |
-
# Load the model
|
76 |
-
if llm is None or llm_model != model:
|
77 |
-
llm = Llama(
|
78 |
-
model_path=f"models/{model}",
|
79 |
-
flash_attn=False,
|
80 |
-
n_gpu_layers=0,
|
81 |
-
n_batch=32,
|
82 |
-
n_ctx=8192,
|
83 |
-
)
|
84 |
-
llm_model = model
|
85 |
-
provider = LlamaCppPythonProvider(llm)
|
86 |
-
|
87 |
-
# Create the agent
|
88 |
-
agent = LlamaCppAgent(
|
89 |
-
provider,
|
90 |
-
system_prompt=f"{system_message}",
|
91 |
-
predefined_messages_formatter_type=MessagesFormatterType.CHATML,
|
92 |
-
debug_output=True,
|
93 |
-
)
|
94 |
-
|
95 |
-
# Set the settings like temperature, top-k, top-p, max tokens, etc.
|
96 |
-
settings = provider.get_provider_default_settings()
|
97 |
-
settings.temperature = temperature
|
98 |
-
settings.top_k = top_k
|
99 |
-
settings.top_p = top_p
|
100 |
-
settings.max_tokens = max_tokens
|
101 |
-
settings.repeat_penalty = repeat_penalty
|
102 |
-
settings.stream = True
|
103 |
-
|
104 |
-
messages = BasicChatHistory()
|
105 |
-
|
106 |
-
# Add the chat history
|
107 |
-
for msn in history:
|
108 |
-
user = {"role": Roles.user, "content": msn[0]}
|
109 |
-
assistant = {"role": Roles.assistant, "content": msn[1]}
|
110 |
-
messages.add_message(user)
|
111 |
-
messages.add_message(assistant)
|
112 |
-
|
113 |
-
# Get the response stream
|
114 |
-
stream = agent.get_chat_response(
|
115 |
-
message,
|
116 |
-
llm_sampling_settings=settings,
|
117 |
-
chat_history=messages,
|
118 |
-
returns_streaming_generator=True,
|
119 |
-
print_output=False,
|
120 |
-
)
|
121 |
-
|
122 |
-
# Generate the response
|
123 |
-
outputs = ""
|
124 |
-
for output in stream:
|
125 |
-
outputs += output
|
126 |
-
yield outputs
|
127 |
-
|
128 |
-
|
129 |
-
# Create a chat interface
|
130 |
-
demo = gr.ChatInterface(
|
131 |
-
respond,
|
132 |
-
additional_inputs_accordion=gr.Accordion(
|
133 |
-
label="⚙️ Parameters", open=False, render=False
|
134 |
-
),
|
135 |
-
additional_inputs=[
|
136 |
-
gr.Dropdown(
|
137 |
-
[
|
138 |
-
"Dolphin3.0-Llama3.2-1B-Q6_K.gguf",
|
139 |
-
"Dolphin3.0-Qwen2.5-1.5B-Q6_K.gguf",
|
140 |
-
"Dolphin3.0-Qwen2.5-0.5B-Q6_K.gguf",
|
141 |
-
],
|
142 |
-
value="Dolphin3.0-Llama3.2-1B-Q6_K.gguf",
|
143 |
-
label="Model",
|
144 |
-
),
|
145 |
-
gr.Textbox(
|
146 |
-
value="You are Dolphin an AI assistant that helps humanity.",
|
147 |
-
label="System message",
|
148 |
-
),
|
149 |
-
gr.Slider(minimum=1, maximum=8192, value=8192, step=1, label="Max tokens"),
|
150 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
151 |
-
gr.Slider(
|
152 |
-
minimum=0.1,
|
153 |
-
maximum=1.0,
|
154 |
-
value=0.95,
|
155 |
-
step=0.05,
|
156 |
-
label="Top-p",
|
157 |
-
),
|
158 |
-
gr.Slider(
|
159 |
-
minimum=0,
|
160 |
-
maximum=100,
|
161 |
-
value=40,
|
162 |
-
step=1,
|
163 |
-
label="Top-k",
|
164 |
-
),
|
165 |
-
gr.Slider(
|
166 |
-
minimum=0.0,
|
167 |
-
maximum=2.0,
|
168 |
-
value=1.1,
|
169 |
-
step=0.1,
|
170 |
-
label="Repetition penalty",
|
171 |
-
),
|
172 |
-
],
|
173 |
-
theme="Glass",
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
if __name__ == "__main__":
|
190 |
-
demo.launch(debug=False)
|
|
|
1 |
+
# Importing required libraries
|
2 |
+
import json
|
3 |
+
import subprocess
|
4 |
+
from llama_cpp import Llama
|
5 |
+
from llama_cpp_agent import LlamaCppAgent
|
6 |
+
from llama_cpp_agent import MessagesFormatterType
|
7 |
+
from llama_cpp_agent.providers import LlamaCppPythonProvider
|
8 |
+
from llama_cpp_agent.chat_history import BasicChatHistory
|
9 |
+
from llama_cpp_agent.chat_history.messages import Roles
|
10 |
+
import gradio as gr
|
11 |
+
from huggingface_hub import hf_hub_download
|
12 |
+
|
13 |
+
|
14 |
+
# Download gguf model files
|
15 |
+
llm = None
|
16 |
+
llm_model = None
|
17 |
+
|
18 |
+
hf_hub_download(
|
19 |
+
repo_id="bartowski/Dolphin3.0-Llama3.2-1B-GGUF",
|
20 |
+
filename="Dolphin3.0-Llama3.2-1B-Q6_K.gguf",
|
21 |
+
local_dir="./models",
|
22 |
+
)
|
23 |
+
hf_hub_download(
|
24 |
+
repo_id="bartowski/Dolphin3.0-Qwen2.5-1.5B-GGUF",
|
25 |
+
filename="Dolphin3.0-Qwen2.5-1.5B-Q6_K.gguf",
|
26 |
+
local_dir="./models",
|
27 |
+
)
|
28 |
+
hf_hub_download(
|
29 |
+
repo_id="bartowski/Dolphin3.0-Qwen2.5-0.5B-GGUF",
|
30 |
+
filename="Dolphin3.0-Qwen2.5-0.5B-Q6_K.gguf",
|
31 |
+
local_dir="./models",
|
32 |
+
)
|
33 |
+
|
34 |
+
# Set the title and description
|
35 |
+
title = "Dolphin-3 Llama.cpp 🐬"
|
36 |
+
description = """Dolphin 3.0 is a powerful, general-purpose local AI model designed for coding, math, and various other tasks, aiming similar to the models like ChatGPT and Claude."""
|
37 |
+
examples = [
|
38 |
+
["Provide a historical fact about the capital of France."],
|
39 |
+
["Suggest a three-day itinerary for exploring Tokyo and nearby areas?"],
|
40 |
+
["Can you write a short, imaginative story about exploring a forest?"],
|
41 |
+
]
|
42 |
+
|
43 |
+
|
44 |
+
def respond(
|
45 |
+
message,
|
46 |
+
history: list[tuple[str, str]],
|
47 |
+
model,
|
48 |
+
system_message,
|
49 |
+
max_tokens,
|
50 |
+
temperature,
|
51 |
+
top_p,
|
52 |
+
top_k,
|
53 |
+
repeat_penalty,
|
54 |
+
):
|
55 |
+
"""
|
56 |
+
Respond to a message using the Dolphin-3 model via Llama.cpp.
|
57 |
+
|
58 |
+
Args:
|
59 |
+
- message (str): The message to respond to.
|
60 |
+
- history (list[tuple[str, str]]): The chat history.
|
61 |
+
- model (str): The model to use.
|
62 |
+
- max_tokens (int): The maximum number of tokens to generate.
|
63 |
+
- temperature (float): The temperature of the model.
|
64 |
+
- top_p (float): The top-p of the model.
|
65 |
+
- top_k (int): The top-k of the model.
|
66 |
+
- repeat_penalty (float): The repetition penalty of the model.
|
67 |
+
|
68 |
+
Returns:
|
69 |
+
str: The response to the message.
|
70 |
+
"""
|
71 |
+
# Load the global variables
|
72 |
+
global llm
|
73 |
+
global llm_model
|
74 |
+
|
75 |
+
# Load the model
|
76 |
+
if llm is None or llm_model != model:
|
77 |
+
llm = Llama(
|
78 |
+
model_path=f"models/{model}",
|
79 |
+
flash_attn=False,
|
80 |
+
n_gpu_layers=0,
|
81 |
+
n_batch=32,
|
82 |
+
n_ctx=8192,
|
83 |
+
)
|
84 |
+
llm_model = model
|
85 |
+
provider = LlamaCppPythonProvider(llm)
|
86 |
+
|
87 |
+
# Create the agent
|
88 |
+
agent = LlamaCppAgent(
|
89 |
+
provider,
|
90 |
+
system_prompt=f"{system_message}",
|
91 |
+
predefined_messages_formatter_type=MessagesFormatterType.CHATML,
|
92 |
+
debug_output=True,
|
93 |
+
)
|
94 |
+
|
95 |
+
# Set the settings like temperature, top-k, top-p, max tokens, etc.
|
96 |
+
settings = provider.get_provider_default_settings()
|
97 |
+
settings.temperature = temperature
|
98 |
+
settings.top_k = top_k
|
99 |
+
settings.top_p = top_p
|
100 |
+
settings.max_tokens = max_tokens
|
101 |
+
settings.repeat_penalty = repeat_penalty
|
102 |
+
settings.stream = True
|
103 |
+
|
104 |
+
messages = BasicChatHistory()
|
105 |
+
|
106 |
+
# Add the chat history
|
107 |
+
for msn in history:
|
108 |
+
user = {"role": Roles.user, "content": msn[0]}
|
109 |
+
assistant = {"role": Roles.assistant, "content": msn[1]}
|
110 |
+
messages.add_message(user)
|
111 |
+
messages.add_message(assistant)
|
112 |
+
|
113 |
+
# Get the response stream
|
114 |
+
stream = agent.get_chat_response(
|
115 |
+
message,
|
116 |
+
llm_sampling_settings=settings,
|
117 |
+
chat_history=messages,
|
118 |
+
returns_streaming_generator=True,
|
119 |
+
print_output=False,
|
120 |
+
)
|
121 |
+
|
122 |
+
# Generate the response
|
123 |
+
outputs = ""
|
124 |
+
for output in stream:
|
125 |
+
outputs += output
|
126 |
+
yield outputs
|
127 |
+
|
128 |
+
|
129 |
+
# Create a chat interface
|
130 |
+
demo = gr.ChatInterface(
|
131 |
+
respond,
|
132 |
+
additional_inputs_accordion=gr.Accordion(
|
133 |
+
label="⚙️ Parameters", open=False, render=False
|
134 |
+
),
|
135 |
+
additional_inputs=[
|
136 |
+
gr.Dropdown(
|
137 |
+
[
|
138 |
+
"Dolphin3.0-Llama3.2-1B-Q6_K.gguf",
|
139 |
+
"Dolphin3.0-Qwen2.5-1.5B-Q6_K.gguf",
|
140 |
+
"Dolphin3.0-Qwen2.5-0.5B-Q6_K.gguf",
|
141 |
+
],
|
142 |
+
value="Dolphin3.0-Llama3.2-1B-Q6_K.gguf",
|
143 |
+
label="Model",
|
144 |
+
),
|
145 |
+
gr.Textbox(
|
146 |
+
value="You are Dolphin an AI assistant that helps humanity.",
|
147 |
+
label="System message",
|
148 |
+
),
|
149 |
+
gr.Slider(minimum=1, maximum=8192, value=8192, step=1, label="Max tokens"),
|
150 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
151 |
+
gr.Slider(
|
152 |
+
minimum=0.1,
|
153 |
+
maximum=1.0,
|
154 |
+
value=0.95,
|
155 |
+
step=0.05,
|
156 |
+
label="Top-p",
|
157 |
+
),
|
158 |
+
gr.Slider(
|
159 |
+
minimum=0,
|
160 |
+
maximum=100,
|
161 |
+
value=40,
|
162 |
+
step=1,
|
163 |
+
label="Top-k",
|
164 |
+
),
|
165 |
+
gr.Slider(
|
166 |
+
minimum=0.0,
|
167 |
+
maximum=2.0,
|
168 |
+
value=1.1,
|
169 |
+
step=0.1,
|
170 |
+
label="Repetition penalty",
|
171 |
+
),
|
172 |
+
],
|
173 |
+
theme="Glass",
|
174 |
+
submit_btn="Send",
|
175 |
+
stop_btn="Stop",
|
176 |
+
title=title,
|
177 |
+
description=description,
|
178 |
+
chatbot=gr.Chatbot(scale=1, show_copy_button=True),
|
179 |
+
examples=examples,
|
180 |
+
cache_examples=True,
|
181 |
+
cache_mode="lazy",
|
182 |
+
flagging_mode="never",
|
183 |
+
)
|
184 |
+
|
185 |
+
|
186 |
+
# Launch the chat interface
|
187 |
+
if __name__ == "__main__":
|
188 |
+
demo.launch(debug=False)
|
|
|
|