sivan22
commited on
Commit
ยท
3d33fb5
1
Parent(s):
b067875
init from PC
Browse files- __init__.py +13 -0
- app.py +138 -0
- requirements.txt +9 -0
- run.bat +2 -0
- utils.py +28 -0
__init__.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Streamlit Inc. (2018-2022) Snowflake Inc. (2022)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
app.py
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from streamlit.logger import get_logger
|
3 |
+
import datasets
|
4 |
+
import pandas as pd
|
5 |
+
from langchain_huggingface.embeddings import HuggingFaceEmbeddings
|
6 |
+
from langchain_openai import ChatOpenAI
|
7 |
+
from langchain_core.prompts import PromptTemplate
|
8 |
+
from langchain_core.messages import HumanMessage, SystemMessage
|
9 |
+
from sentence_transformers import util
|
10 |
+
from torch import tensor
|
11 |
+
from io import StringIO
|
12 |
+
|
13 |
+
|
14 |
+
LOGGER = get_logger(__name__)
|
15 |
+
|
16 |
+
|
17 |
+
@st.cache_data
|
18 |
+
def get_df(uploaded_file) ->object:
|
19 |
+
if uploaded_file is None:
|
20 |
+
return None
|
21 |
+
stringio = StringIO(uploaded_file.getvalue().decode("utf-8"))
|
22 |
+
string_data = stringio.read()
|
23 |
+
df = pd.DataFrame(string_data.split('\n'), columns=['text'])
|
24 |
+
return df
|
25 |
+
|
26 |
+
@st.cache_data
|
27 |
+
def get_embeddings(df,_embeddings_model) ->object:
|
28 |
+
df['embeddings'] = df['text'].apply(lambda x: _embeddings_model.embed_query('passage: '+ x))
|
29 |
+
return df
|
30 |
+
|
31 |
+
@st.cache_resource
|
32 |
+
def get_model()->object:
|
33 |
+
model_name = "intfloat/multilingual-e5-large"
|
34 |
+
model_kwargs = {'device': 'cuda'} #'cpu' or 'cuda'
|
35 |
+
encode_kwargs = {'normalize_embeddings': True}
|
36 |
+
embeddings_model = HuggingFaceEmbeddings(
|
37 |
+
model_name=model_name,
|
38 |
+
model_kwargs=model_kwargs,
|
39 |
+
encode_kwargs=encode_kwargs
|
40 |
+
)
|
41 |
+
return embeddings_model
|
42 |
+
|
43 |
+
@st.cache_resource
|
44 |
+
def get_chat_api(api_key:str):
|
45 |
+
chat = ChatOpenAI(model="gpt-3.5-turbo-16k", api_key=api_key)
|
46 |
+
return chat
|
47 |
+
|
48 |
+
|
49 |
+
def get_results(embeddings_model,input,df,num_of_results) -> pd.DataFrame:
|
50 |
+
embeddings = embeddings_model.embed_query('query: '+ input)
|
51 |
+
hits = util.semantic_search(tensor(embeddings), tensor(df['embeddings'].tolist()), top_k=num_of_results)
|
52 |
+
hit_list = [hit['corpus_id'] for hit in hits[0]]
|
53 |
+
return df.iloc[hit_list]
|
54 |
+
|
55 |
+
def get_llm_results(query,chat,results):
|
56 |
+
|
57 |
+
prompt_template = PromptTemplate.from_template(
|
58 |
+
"""
|
59 |
+
your misssion is to rank the given answers based on their relevance to the given question.
|
60 |
+
Provide a relevancy score between 0 (not relevant) and 1 (highly relevant) for each possible answer.
|
61 |
+
the results should be in the following JSON format: "answer": "score", "answer": "score" while answer is the possible answer's text and score is the relevancy score.
|
62 |
+
|
63 |
+
the question is: {query}
|
64 |
+
|
65 |
+
the possible answers are:
|
66 |
+
{answers}
|
67 |
+
|
68 |
+
""" )
|
69 |
+
|
70 |
+
messages = [
|
71 |
+
SystemMessage(content="""
|
72 |
+
You're a helpful assistant.
|
73 |
+
Return a JSON formatted string.
|
74 |
+
"""),
|
75 |
+
HumanMessage(content=prompt_template.format(query=query, answers=str.join('\n', results['text'].head(10).tolist()))),
|
76 |
+
]
|
77 |
+
|
78 |
+
response = chat.invoke(messages)
|
79 |
+
llm_results_df = pd.read_json(response.content, orient='index')
|
80 |
+
llm_results_df.rename(columns={0: 'score'}, inplace=True)
|
81 |
+
llm_results_df.sort_values(by='score', ascending=False, inplace=True)
|
82 |
+
return llm_results_df
|
83 |
+
|
84 |
+
|
85 |
+
|
86 |
+
def run():
|
87 |
+
st.set_page_config(
|
88 |
+
page_title=" ืืืคืืฉ ืกืื ืื",
|
89 |
+
page_icon="",
|
90 |
+
layout="wide",
|
91 |
+
initial_sidebar_state="expanded"
|
92 |
+
)
|
93 |
+
|
94 |
+
st.write("# ืืืคืืฉ ืืื ")
|
95 |
+
st.write('ื ืืชื ืืืขืืืช ืื ืงืืืฅ ืืงืกื, ืืืืชืื ืืืฆืืจืช ืืืื ืืงืก ืืืืืจ ืืื ืืืคืฉ ืืฉืคื ืืืคืฉืืช')
|
96 |
+
st.write('ืืฆืืจืช ืืืื ืืงืก ืขืฉืืื ืืงืืช ืืกืคืจ ืืงืืช, ืืชืืืื ืืืืื ืืงืืืฅ')
|
97 |
+
|
98 |
+
uploaded_file = st.file_uploader('ืืขืื ืงืืืฅ', type=['txt'], on_change=run)
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
+
|
103 |
+
|
104 |
+
embeddings_model = get_model()
|
105 |
+
df = get_df(uploaded_file)
|
106 |
+
if df is None:
|
107 |
+
st.write("ืื ืืืขืื ืงืืืฅ")
|
108 |
+
else:
|
109 |
+
df = get_embeddings(df,embeddings_model)
|
110 |
+
|
111 |
+
|
112 |
+
|
113 |
+
user_input = st.text_input('ืืชืื ืืื ืืช ืฉืืืชื', placeholder='')
|
114 |
+
num_of_results = st.sidebar.slider('ืืกืคืจ ืืชืืฆืืืช ืฉืืจืฆืื ื ืืืฆืื:',1,25,5)
|
115 |
+
use_llm = st.sidebar.checkbox("ืืฉืชืืฉ ืืืืื ืฉืคื ืืื ืืฉืคืจ ืชืืฆืืืช", False)
|
116 |
+
openAikey = st.sidebar.text_input("OpenAI API key", type="password")
|
117 |
+
|
118 |
+
|
119 |
+
if (st.button('ืืคืฉ') or user_input) and user_input!="" and df is not None:
|
120 |
+
|
121 |
+
|
122 |
+
results = get_results(embeddings_model,user_input,df,num_of_results)
|
123 |
+
|
124 |
+
if use_llm:
|
125 |
+
if openAikey == None or openAikey=="":
|
126 |
+
st.write("ืื ืืืื ืก ืืคืชื ืฉื OpenAI")
|
127 |
+
|
128 |
+
else:
|
129 |
+
chat = get_chat_api(openAikey)
|
130 |
+
llm_results = get_llm_results(user_input,chat,results)
|
131 |
+
st.write(llm_results)
|
132 |
+
|
133 |
+
else:
|
134 |
+
st.write(results.head(10))
|
135 |
+
|
136 |
+
|
137 |
+
if __name__ == "__main__":
|
138 |
+
run()
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pandas
|
2 |
+
streamlit
|
3 |
+
torch
|
4 |
+
transformers
|
5 |
+
datasets
|
6 |
+
langchain_huggingface
|
7 |
+
langchain_openai
|
8 |
+
langchain
|
9 |
+
sentence_transformers
|
run.bat
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
pip install -r requirements.txt
|
2 |
+
streamlit run app.py
|
utils.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Streamlit Inc. (2018-2022) Snowflake Inc. (2022)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import inspect
|
16 |
+
import textwrap
|
17 |
+
|
18 |
+
import streamlit as st
|
19 |
+
|
20 |
+
|
21 |
+
def show_code(demo):
|
22 |
+
"""Showing the code of the demo."""
|
23 |
+
show_code = st.sidebar.checkbox("Show code", True)
|
24 |
+
if show_code:
|
25 |
+
# Showing the code of the demo.
|
26 |
+
st.markdown("## Code")
|
27 |
+
sourcelines, _ = inspect.getsourcelines(demo)
|
28 |
+
st.code(textwrap.dedent("".join(sourcelines[1:])))
|