Upload 16 files
Browse files- .gitattributes +8 -0
- examples/corgi1.webp +0 -0
- examples/corgi2.jpg +0 -0
- examples/fries1.png +3 -0
- examples/fries2.png +3 -0
- examples/minecraft1.jpg +3 -0
- examples/placeholder.png +0 -0
- examples/ref_vase.JPG +3 -0
- examples/river1.png +3 -0
- examples/river1.wav +3 -0
- examples/river1_mask.png +0 -0
- examples/river2.png +3 -0
- examples/vasedeck.mp4 +3 -0
- examples/zebras1.jpg +0 -0
- examples/zebras2.jpg +0 -0
- tasks/__init__.py +1 -0
- tasks/interactive.py +268 -0
.gitattributes
CHANGED
|
@@ -76,3 +76,11 @@ inference/images/region_retrieval.png filter=lfs diff=lfs merge=lfs -text
|
|
| 76 |
inference/images/rose.webp filter=lfs diff=lfs merge=lfs -text
|
| 77 |
inference/images/street.jpg filter=lfs diff=lfs merge=lfs -text
|
| 78 |
inference/images/teaser_new.png filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
inference/images/rose.webp filter=lfs diff=lfs merge=lfs -text
|
| 77 |
inference/images/street.jpg filter=lfs diff=lfs merge=lfs -text
|
| 78 |
inference/images/teaser_new.png filter=lfs diff=lfs merge=lfs -text
|
| 79 |
+
examples/fries1.png filter=lfs diff=lfs merge=lfs -text
|
| 80 |
+
examples/fries2.png filter=lfs diff=lfs merge=lfs -text
|
| 81 |
+
examples/minecraft1.jpg filter=lfs diff=lfs merge=lfs -text
|
| 82 |
+
examples/ref_vase.JPG filter=lfs diff=lfs merge=lfs -text
|
| 83 |
+
examples/river1.png filter=lfs diff=lfs merge=lfs -text
|
| 84 |
+
examples/river1.wav filter=lfs diff=lfs merge=lfs -text
|
| 85 |
+
examples/river2.png filter=lfs diff=lfs merge=lfs -text
|
| 86 |
+
examples/vasedeck.mp4 filter=lfs diff=lfs merge=lfs -text
|
examples/corgi1.webp
ADDED
|
examples/corgi2.jpg
ADDED
|
examples/fries1.png
ADDED
|
Git LFS Details
|
examples/fries2.png
ADDED
|
Git LFS Details
|
examples/minecraft1.jpg
ADDED
|
Git LFS Details
|
examples/placeholder.png
ADDED
|
examples/ref_vase.JPG
ADDED
|
|
Git LFS Details
|
examples/river1.png
ADDED
|
Git LFS Details
|
examples/river1.wav
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a71fa0c20c27f4ffe7567f437aec982877b5ccf34a7563d5603919bf6899a03a
|
| 3 |
+
size 397484
|
examples/river1_mask.png
ADDED
|
examples/river2.png
ADDED
|
Git LFS Details
|
examples/vasedeck.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:726107c05e5837feb5c761714ef3eb2403b338392732ac10ff61969771cdd5a1
|
| 3 |
+
size 22498026
|
examples/zebras1.jpg
ADDED
|
examples/zebras2.jpg
ADDED
|
tasks/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
from .interactive import interactive_infer_video, interactive_infer_image
|
tasks/interactive.py
ADDED
|
@@ -0,0 +1,268 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# --------------------------------------------------------
|
| 2 |
+
# SEEM -- Segment Everything Everywhere All At Once
|
| 3 |
+
# Copyright (c) 2022 Microsoft
|
| 4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
| 5 |
+
# Written by Xueyan Zou ([email protected])
|
| 6 |
+
# --------------------------------------------------------
|
| 7 |
+
|
| 8 |
+
import torch
|
| 9 |
+
import numpy as np
|
| 10 |
+
import torch.nn.functional as F
|
| 11 |
+
from PIL import Image
|
| 12 |
+
from torchvision import transforms
|
| 13 |
+
from utils.visualizer import Visualizer
|
| 14 |
+
from detectron2.utils.colormap import random_color
|
| 15 |
+
from detectron2.data import MetadataCatalog
|
| 16 |
+
from detectron2.structures import BitMasks
|
| 17 |
+
from modeling.language.loss import vl_similarity
|
| 18 |
+
from utils.constants import COCO_PANOPTIC_CLASSES
|
| 19 |
+
from detectron2.data.datasets.builtin_meta import COCO_CATEGORIES
|
| 20 |
+
|
| 21 |
+
import cv2
|
| 22 |
+
import os
|
| 23 |
+
import glob
|
| 24 |
+
import subprocess
|
| 25 |
+
from PIL import Image
|
| 26 |
+
import random
|
| 27 |
+
|
| 28 |
+
t = []
|
| 29 |
+
t.append(transforms.Resize(512, interpolation=Image.BICUBIC))
|
| 30 |
+
transform = transforms.Compose(t)
|
| 31 |
+
metadata = MetadataCatalog.get('coco_2017_train_panoptic')
|
| 32 |
+
all_classes = [name.replace('-other','').replace('-merged','') for name in COCO_PANOPTIC_CLASSES] + ["others"]
|
| 33 |
+
colors_list = [(np.array(color['color'])/255).tolist() for color in COCO_CATEGORIES] + [[1, 1, 1]]
|
| 34 |
+
|
| 35 |
+
def interactive_infer_image(model, audio_model, image, tasks, refimg=None, reftxt=None, audio_pth=None, video_pth=None):
|
| 36 |
+
image_ori = transform(image['image'])
|
| 37 |
+
mask_ori = image['mask']
|
| 38 |
+
width = image_ori.size[0]
|
| 39 |
+
height = image_ori.size[1]
|
| 40 |
+
image_ori = np.asarray(image_ori)
|
| 41 |
+
visual = Visualizer(image_ori, metadata=metadata)
|
| 42 |
+
images = torch.from_numpy(image_ori.copy()).permute(2,0,1).cuda()
|
| 43 |
+
|
| 44 |
+
# stroke_inimg = None
|
| 45 |
+
# stroke_refimg = None
|
| 46 |
+
|
| 47 |
+
data = {"image": images, "height": height, "width": width}
|
| 48 |
+
if len(tasks) == 0:
|
| 49 |
+
tasks = ["Panoptic"]
|
| 50 |
+
|
| 51 |
+
# inistalize task
|
| 52 |
+
model.model.task_switch['spatial'] = False
|
| 53 |
+
model.model.task_switch['visual'] = False
|
| 54 |
+
model.model.task_switch['grounding'] = False
|
| 55 |
+
model.model.task_switch['audio'] = False
|
| 56 |
+
|
| 57 |
+
example = None
|
| 58 |
+
if 'Example' in tasks:
|
| 59 |
+
model.model.task_switch['visual'] = True
|
| 60 |
+
model.model.task_switch['spatial'] = True
|
| 61 |
+
refimg_ori, refimg_mask = refimg['image'], refimg['mask']
|
| 62 |
+
refimg_ori = transform(refimg_ori)
|
| 63 |
+
_width = refimg_ori.size[0]
|
| 64 |
+
_height = refimg_ori.size[1]
|
| 65 |
+
refimg_ori = np.asarray(refimg_ori)
|
| 66 |
+
refimg_ori_np = refimg_ori.copy()
|
| 67 |
+
images = torch.from_numpy(refimg_ori.copy()).permute(2,0,1).cuda()
|
| 68 |
+
batched_inputs = [{'image': images, 'height': _height, 'width': _width, 'spatial_query':{}}]
|
| 69 |
+
|
| 70 |
+
refimg_mask = np.asarray(refimg_mask)[:,:,0:1].copy()
|
| 71 |
+
refimg_mask = torch.from_numpy(refimg_mask).permute(2,0,1)[None,]
|
| 72 |
+
refimg_mask = (F.interpolate(refimg_mask, (_height, _width), mode='bilinear') > 0)
|
| 73 |
+
batched_inputs[0]['spatial_query']['rand_shape'] = refimg_mask
|
| 74 |
+
outputs_refimg, img_shape = model.model.evaluate_referring_image(batched_inputs)
|
| 75 |
+
model.model.task_switch['spatial'] = False
|
| 76 |
+
data['visual'] = outputs_refimg
|
| 77 |
+
|
| 78 |
+
# overlay = refimg_mask[0,0].float().numpy()[:,:,None] * np.array([0,0,255])
|
| 79 |
+
# x = refimg_ori_np
|
| 80 |
+
# stroke_refimg = x * (1 - refimg_mask[0,0].float().numpy()[:,:,None]) + (x * refimg_mask[0,0].numpy()[:,:,None] * 0.2 + overlay * 0.8)
|
| 81 |
+
# stroke_refimg = Image.fromarray(stroke_refimg.astype(np.uint8))
|
| 82 |
+
|
| 83 |
+
stroke = None
|
| 84 |
+
if 'Stroke' in tasks:
|
| 85 |
+
model.model.task_switch['spatial'] = True
|
| 86 |
+
mask_ori = np.asarray(mask_ori)[:,:,0:1].copy()
|
| 87 |
+
mask_ori = torch.from_numpy(mask_ori).permute(2,0,1)[None,]
|
| 88 |
+
mask_ori = (F.interpolate(mask_ori, (height, width), mode='bilinear') > 0)
|
| 89 |
+
data['stroke'] = mask_ori
|
| 90 |
+
|
| 91 |
+
# overlay = mask_ori[0,0].float().numpy()[:,:,None] * np.array([0,255,0])
|
| 92 |
+
# x = image_ori
|
| 93 |
+
# stroke_inimg = x * (1 - mask_ori[0,0].float().numpy()[:,:,None]) + (x * mask_ori[0,0].numpy()[:,:,None] * 0.2 + overlay * 0.8)
|
| 94 |
+
# stroke_inimg = Image.fromarray(stroke_inimg.astype(np.uint8))
|
| 95 |
+
|
| 96 |
+
text = None
|
| 97 |
+
if 'Text' in tasks:
|
| 98 |
+
model.model.task_switch['grounding'] = True
|
| 99 |
+
data['text'] = [reftxt]
|
| 100 |
+
|
| 101 |
+
audio = None
|
| 102 |
+
if 'Audio' in tasks:
|
| 103 |
+
model.model.task_switch['audio'] = True
|
| 104 |
+
audio_result = audio_model.transcribe(audio_pth)
|
| 105 |
+
data['audio'] = [audio_result['text']]
|
| 106 |
+
|
| 107 |
+
batch_inputs = [data]
|
| 108 |
+
if 'Panoptic' in tasks:
|
| 109 |
+
model.model.metadata = metadata
|
| 110 |
+
results = model.model.evaluate(batch_inputs)
|
| 111 |
+
pano_seg = results[-1]['panoptic_seg'][0]
|
| 112 |
+
pano_seg_info = results[-1]['panoptic_seg'][1]
|
| 113 |
+
demo = visual.draw_panoptic_seg(pano_seg.cpu(), pano_seg_info) # rgb Image
|
| 114 |
+
res = demo.get_image()
|
| 115 |
+
return Image.fromarray(res), None
|
| 116 |
+
else:
|
| 117 |
+
results,image_size,extra = model.model.evaluate_demo(batch_inputs)
|
| 118 |
+
|
| 119 |
+
# If contians spatial use spatial:
|
| 120 |
+
if 'Stroke' in tasks:
|
| 121 |
+
v_emb = results['pred_maskembs']
|
| 122 |
+
s_emb = results['pred_pspatials']
|
| 123 |
+
pred_masks = results['pred_masks']
|
| 124 |
+
|
| 125 |
+
pred_logits = v_emb @ s_emb.transpose(1,2)
|
| 126 |
+
logits_idx_y = pred_logits[:,:,0].max(dim=1)[1]
|
| 127 |
+
logits_idx_x = torch.arange(len(logits_idx_y), device=logits_idx_y.device)
|
| 128 |
+
logits_idx = torch.stack([logits_idx_x, logits_idx_y]).tolist()
|
| 129 |
+
pred_masks_pos = pred_masks[logits_idx]
|
| 130 |
+
pred_class = results['pred_logits'][logits_idx].max(dim=-1)[1]
|
| 131 |
+
|
| 132 |
+
elif 'Example' in tasks:
|
| 133 |
+
v_emb = results['pred_maskembs']
|
| 134 |
+
s_emb = results['pred_pvisuals']
|
| 135 |
+
pred_masks = results['pred_masks']
|
| 136 |
+
|
| 137 |
+
pred_logits = v_emb @ s_emb.transpose(1,2)
|
| 138 |
+
logits_idx_y = pred_logits[:,:,0].max(dim=1)[1]
|
| 139 |
+
logits_idx_x = torch.arange(len(logits_idx_y), device=logits_idx_y.device)
|
| 140 |
+
logits_idx = torch.stack([logits_idx_x, logits_idx_y]).tolist()
|
| 141 |
+
pred_masks_pos = pred_masks[logits_idx]
|
| 142 |
+
pred_class = results['pred_logits'][logits_idx].max(dim=-1)[1]
|
| 143 |
+
|
| 144 |
+
elif 'Text' in tasks:
|
| 145 |
+
pred_masks = results['pred_masks'][0]
|
| 146 |
+
v_emb = results['pred_captions'][0]
|
| 147 |
+
t_emb = extra['grounding_class']
|
| 148 |
+
|
| 149 |
+
t_emb = t_emb / (t_emb.norm(dim=-1, keepdim=True) + 1e-7)
|
| 150 |
+
v_emb = v_emb / (v_emb.norm(dim=-1, keepdim=True) + 1e-7)
|
| 151 |
+
|
| 152 |
+
temperature = model.model.sem_seg_head.predictor.lang_encoder.logit_scale
|
| 153 |
+
out_prob = vl_similarity(v_emb, t_emb, temperature=temperature)
|
| 154 |
+
|
| 155 |
+
matched_id = out_prob.max(0)[1]
|
| 156 |
+
pred_masks_pos = pred_masks[matched_id,:,:]
|
| 157 |
+
pred_class = results['pred_logits'][0][matched_id].max(dim=-1)[1]
|
| 158 |
+
|
| 159 |
+
elif 'Audio' in tasks:
|
| 160 |
+
pred_masks = results['pred_masks'][0]
|
| 161 |
+
v_emb = results['pred_captions'][0]
|
| 162 |
+
t_emb = extra['audio_class']
|
| 163 |
+
|
| 164 |
+
t_emb = t_emb / (t_emb.norm(dim=-1, keepdim=True) + 1e-7)
|
| 165 |
+
v_emb = v_emb / (v_emb.norm(dim=-1, keepdim=True) + 1e-7)
|
| 166 |
+
|
| 167 |
+
temperature = model.model.sem_seg_head.predictor.lang_encoder.logit_scale
|
| 168 |
+
out_prob = vl_similarity(v_emb, t_emb, temperature=temperature)
|
| 169 |
+
|
| 170 |
+
matched_id = out_prob.max(0)[1]
|
| 171 |
+
pred_masks_pos = pred_masks[matched_id,:,:]
|
| 172 |
+
pred_class = results['pred_logits'][0][matched_id].max(dim=-1)[1]
|
| 173 |
+
|
| 174 |
+
# interpolate mask to ori size
|
| 175 |
+
pred_masks_pos = (F.interpolate(pred_masks_pos[None,], image_size[-2:], mode='bilinear')[0,:,:data['height'],:data['width']] > 0.0).float().cpu().numpy()
|
| 176 |
+
texts = [all_classes[pred_class[0]]]
|
| 177 |
+
|
| 178 |
+
for idx, mask in enumerate(pred_masks_pos):
|
| 179 |
+
# color = random_color(rgb=True, maximum=1).astype(np.int32).tolist()
|
| 180 |
+
out_txt = texts[idx] if 'Text' not in tasks else reftxt
|
| 181 |
+
demo = visual.draw_binary_mask(mask, color=colors_list[pred_class[0]%133], text=out_txt)
|
| 182 |
+
res = demo.get_image()
|
| 183 |
+
torch.cuda.empty_cache()
|
| 184 |
+
# return Image.fromarray(res), stroke_inimg, stroke_refimg
|
| 185 |
+
return Image.fromarray(res), None
|
| 186 |
+
|
| 187 |
+
def interactive_infer_video(model, audio_model, image, tasks, refimg=None, reftxt=None, audio_pth=None, video_pth=None):
|
| 188 |
+
if 'Video' in tasks:
|
| 189 |
+
input_dir = video_pth.replace('.mp4', '')
|
| 190 |
+
input_name = input_dir.split('/')[-1]
|
| 191 |
+
random_number = str(random.randint(10000, 99999))
|
| 192 |
+
output_dir = input_dir + '_output'
|
| 193 |
+
output_name = output_dir.split('/')[-1]
|
| 194 |
+
output_file = video_pth.replace('.mp4', '_{}_output.mp4'.format(random_number))
|
| 195 |
+
frame_interval = 10
|
| 196 |
+
|
| 197 |
+
# Ensure output directory exists
|
| 198 |
+
if not os.path.exists(input_dir):
|
| 199 |
+
os.makedirs(input_dir)
|
| 200 |
+
|
| 201 |
+
if not os.path.exists(output_dir):
|
| 202 |
+
os.makedirs(output_dir)
|
| 203 |
+
|
| 204 |
+
# Build the FFmpeg command
|
| 205 |
+
ffmpeg_cmd = "ffmpeg -i {} -vf \"fps=5\" {}/%04d.png".format(video_pth, input_dir)
|
| 206 |
+
os.system(ffmpeg_cmd)
|
| 207 |
+
|
| 208 |
+
data = {}
|
| 209 |
+
model.model.task_switch['visual'] = True
|
| 210 |
+
model.model.task_switch['spatial'] = True
|
| 211 |
+
refimg_ori, refimg_mask = refimg['image'], refimg['mask']
|
| 212 |
+
refimg_ori = transform(refimg_ori)
|
| 213 |
+
_width = refimg_ori.size[0]
|
| 214 |
+
_height = refimg_ori.size[1]
|
| 215 |
+
refimg_ori = np.asarray(refimg_ori)
|
| 216 |
+
refimg_ori_np = refimg_ori.copy()
|
| 217 |
+
images = torch.from_numpy(refimg_ori.copy()).permute(2,0,1).cuda()
|
| 218 |
+
batched_inputs = [{'image': images, 'height': _height, 'width': _width, 'spatial_query':{}}]
|
| 219 |
+
|
| 220 |
+
refimg_mask = np.asarray(refimg_mask)[:,:,0:1].copy()
|
| 221 |
+
refimg_mask = torch.from_numpy(refimg_mask).permute(2,0,1)[None,]
|
| 222 |
+
refimg_mask = (F.interpolate(refimg_mask, (_height, _width), mode='bilinear') > 0)
|
| 223 |
+
batched_inputs[0]['spatial_query']['rand_shape'] = refimg_mask
|
| 224 |
+
outputs_refimg, img_shape = model.model.evaluate_referring_image(batched_inputs)
|
| 225 |
+
model.model.task_switch['visual'] = False
|
| 226 |
+
model.model.task_switch['spatial'] = False
|
| 227 |
+
data['visual'] = outputs_refimg
|
| 228 |
+
|
| 229 |
+
model.model.task_switch['visual'] = True
|
| 230 |
+
frame_pths = sorted(glob.glob(os.path.join(input_dir, '*.png')))
|
| 231 |
+
for frame_pth in frame_pths:
|
| 232 |
+
image_ori = transform(Image.open(frame_pth))
|
| 233 |
+
width = image_ori.size[0]
|
| 234 |
+
height = image_ori.size[1]
|
| 235 |
+
image_ori = np.asarray(image_ori)
|
| 236 |
+
visual = Visualizer(image_ori[:,:,::-1], metadata=metadata)
|
| 237 |
+
images = torch.from_numpy(image_ori.copy()).permute(2,0,1).cuda()
|
| 238 |
+
|
| 239 |
+
data.update({"image": images, "height": height, "width": width})
|
| 240 |
+
batch_inputs = [data]
|
| 241 |
+
results,image_size,extra = model.model.evaluate_demo(batch_inputs)
|
| 242 |
+
|
| 243 |
+
v_emb = results['pred_maskembs']
|
| 244 |
+
s_emb = results['pred_pvisuals']
|
| 245 |
+
pred_masks = results['pred_masks']
|
| 246 |
+
|
| 247 |
+
pred_logits = v_emb @ s_emb.transpose(1,2)
|
| 248 |
+
logits_idx_y = pred_logits[:,:,0].max(dim=1)[1]
|
| 249 |
+
logits_idx_x = torch.arange(len(logits_idx_y), device=logits_idx_y.device)
|
| 250 |
+
logits_idx = torch.stack([logits_idx_x, logits_idx_y]).tolist()
|
| 251 |
+
pred_masks_pos = pred_masks[logits_idx]
|
| 252 |
+
pred_class = results['pred_logits'][logits_idx].max(dim=-1)[1]
|
| 253 |
+
|
| 254 |
+
pred_masks_pos = (F.interpolate(pred_masks_pos[None,], image_size[-2:], mode='bilinear')[0,:,:data['height'],:data['width']] > 0.0).float().cpu().numpy()
|
| 255 |
+
texts = [all_classes[pred_class[0]]]
|
| 256 |
+
|
| 257 |
+
for idx, mask in enumerate(pred_masks_pos):
|
| 258 |
+
out_txt = texts[idx]
|
| 259 |
+
demo = visual.draw_binary_mask(mask, color=colors_list[pred_class[0]%133], text=out_txt)
|
| 260 |
+
|
| 261 |
+
res = demo.get_image()
|
| 262 |
+
output_pth = frame_pth.replace(input_name, output_name)
|
| 263 |
+
cv2.imwrite(output_pth, res)
|
| 264 |
+
|
| 265 |
+
ffmpeg_cmd = "ffmpeg -framerate 5 -pattern_type glob -i '{}/*.png' -c:v libx264 {}".format(output_dir, output_file)
|
| 266 |
+
os.system(ffmpeg_cmd)
|
| 267 |
+
|
| 268 |
+
return None, output_file
|