Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,178 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
from random import normalvariate, random
|
4 |
+
import plotly.express as px
|
5 |
+
|
6 |
+
from cadCAD.configuration.utils import config_sim
|
7 |
+
from cadCAD.configuration import Experiment
|
8 |
+
from cadCAD.engine import ExecutionContext, Executor
|
9 |
+
from cadCAD import configs
|
10 |
+
import streamlit as st
|
11 |
+
|
12 |
+
|
13 |
+
# Additional dependencies
|
14 |
+
|
15 |
+
# For analytics
|
16 |
+
import numpy as np
|
17 |
+
# For visualization
|
18 |
+
import plotly.express as px
|
19 |
+
pd.options.plotting.backend = "plotly"
|
20 |
+
|
21 |
+
st.header('CeSci Value Flow Model')
|
22 |
+
|
23 |
+
def p_value_flow(params, substep, state_history, previous_state):
|
24 |
+
funding = 0
|
25 |
+
management_costs = 0
|
26 |
+
to_researcher = 0
|
27 |
+
to_journal = 0
|
28 |
+
salary = 0
|
29 |
+
losses = 0
|
30 |
+
if random() < params['probability_funding'] and (previous_state['funding_pool'] > funding):
|
31 |
+
funding = params['funding_round']
|
32 |
+
management_costs = funding * params['alpha']
|
33 |
+
to_researcher = funding - management_costs
|
34 |
+
losses = management_costs
|
35 |
+
|
36 |
+
research_value = funding * (1-params['epsilon'])
|
37 |
+
losses += to_researcher - research_value
|
38 |
+
|
39 |
+
salary = research_value * params['beta']
|
40 |
+
to_journal = research_value + params['cost_publishing']
|
41 |
+
if random() < params['probability_buying']:
|
42 |
+
salary = salary - params['cost_buying']
|
43 |
+
to_journal += params['cost_buying']
|
44 |
+
# losses = funding - to_journal
|
45 |
+
return {'update_researcher_funding': to_researcher,
|
46 |
+
'update_funding_pool': -funding,
|
47 |
+
'update_journal': to_journal,
|
48 |
+
'update_researcher_done': salary,
|
49 |
+
'update_losses': losses}
|
50 |
+
|
51 |
+
def s_researcher_value(params, substep, state_history, previous_state, policy_input):
|
52 |
+
research_funding = policy_input['update_researcher_funding']
|
53 |
+
research_salary = policy_input['update_researcher_done']
|
54 |
+
research_value = previous_state['researcher_value']
|
55 |
+
|
56 |
+
if research_salary == 0:
|
57 |
+
updated_researcher_value = research_funding + research_value
|
58 |
+
return 'researcher_value', updated_researcher_value
|
59 |
+
else:
|
60 |
+
updated_researcher_value = research_salary + research_value
|
61 |
+
return 'researcher_value', updated_researcher_value
|
62 |
+
|
63 |
+
def s_journal_value(params, substep, state_history, previous_state, policy_input):
|
64 |
+
to_journal = policy_input['update_journal']
|
65 |
+
journal_value = previous_state['journal_value']
|
66 |
+
|
67 |
+
updated_journal_value = to_journal + journal_value
|
68 |
+
|
69 |
+
return 'journal_value', updated_journal_value
|
70 |
+
|
71 |
+
def s_funding_pool(params, substep, state_history, previous_state, policy_input):
|
72 |
+
funding_pool = previous_state['funding_pool']
|
73 |
+
updated_funding_pool = funding_pool + policy_input['update_funding_pool']
|
74 |
+
if updated_funding_pool < 0:
|
75 |
+
updated_funding_pool = 0
|
76 |
+
return 'funding_pool', updated_funding_pool
|
77 |
+
|
78 |
+
def s_losses(params, substep, state_history, previous_state, policy_input):
|
79 |
+
losses = previous_state['losses']
|
80 |
+
updated_losses = losses + policy_input['update_losses']
|
81 |
+
return 'losses', updated_losses
|
82 |
+
|
83 |
+
st.subheader('Initial Value Allocation')
|
84 |
+
funding_pool = st.slider('Initial Funding Pool', min_value=1000, max_value=10000, value=1000, step=10)
|
85 |
+
researcher_value = st.slider('Initial Researcher Tokens', min_value=0, max_value=1000, value=0, step=1)
|
86 |
+
journal_value = st.slider('Initial Journal Tokens', min_value=0, max_value=1000, value=0, step=1)
|
87 |
+
st.subheader('Simulation Parameters')
|
88 |
+
st.write('Set the funding disbursed each round from the funding pool')
|
89 |
+
funding_round = st.slider('Funding Round', min_value=100, max_value=1000, value=100, step=1)
|
90 |
+
st.write('Set the relative value leakages in the model.')
|
91 |
+
alpha = st.slider('Management Cost Weight', min_value=0., max_value=1., value=0.1, step=0.0001)
|
92 |
+
epsilon = st.slider('Work Inefficiency Weight', min_value=0., max_value=1., value=0.1, step=0.0001)
|
93 |
+
st.write('Set the portion of grant funding to be used as researcher salary.')
|
94 |
+
beta = st.slider('Salary Weight', min_value=0., max_value=1., value=0.4, step=0.0001)
|
95 |
+
st.write('Set the cost of publishing to a journal and the cost of getting access to papers.')
|
96 |
+
cost_publishing = st.slider('Cost of Publishing', min_value=10., max_value=100., value=10., step=0.1)
|
97 |
+
cost_buying = st.slider('Cost of Buying', min_value=10., max_value=100., value=10., step=0.1)
|
98 |
+
st.write('Set the probability a researcher will buy access to a paper at each timestep.')
|
99 |
+
probability_buying = st.slider('Researcher Probability of Buying', min_value=0., max_value=1., value=0.1, step=0.0001)
|
100 |
+
st.write('Set the probability the grant funding agency will disburse funding each round.')
|
101 |
+
probability_funding = st.slider('Probability of Disbursing Funding', min_value=0., max_value=1., value=0.9, step=0.0001)
|
102 |
+
st.write('Set the number of timesteps in the simulation.')
|
103 |
+
timesteps = st.slider('Timesteps', min_value=10, max_value=1000, value=100, step=1)
|
104 |
+
|
105 |
+
initial_state = {
|
106 |
+
'funding_pool': funding_pool,
|
107 |
+
'researcher_value': researcher_value,
|
108 |
+
'journal_value': journal_value,
|
109 |
+
'losses': 0
|
110 |
+
}
|
111 |
+
|
112 |
+
system_params = {
|
113 |
+
'funding_pool': [funding_pool],
|
114 |
+
'funding_round': [funding_round],
|
115 |
+
'alpha': [alpha],
|
116 |
+
'beta': [beta],
|
117 |
+
'epsilon': [epsilon],
|
118 |
+
'cost_publishing': [cost_publishing],
|
119 |
+
'cost_buying': [cost_buying],
|
120 |
+
'probability_buying': [probability_buying],
|
121 |
+
'probability_funding': [probability_funding]
|
122 |
+
}
|
123 |
+
|
124 |
+
def generate_sim_config(monte_carlo_runs=1,
|
125 |
+
timesteps=timesteps,
|
126 |
+
system_params=system_params):
|
127 |
+
sim_config = config_sim({
|
128 |
+
'N': monte_carlo_runs, # the number of times we'll run the simulation ("Monte Carlo runs")
|
129 |
+
'T': range(timesteps), # the number of timesteps the simulation will run for
|
130 |
+
'M': system_params # the parameters of the system
|
131 |
+
})
|
132 |
+
|
133 |
+
return sim_config
|
134 |
+
|
135 |
+
def configure_experiment(initial_state,
|
136 |
+
partial_state_update_blocks,
|
137 |
+
sim_config):
|
138 |
+
experiment = Experiment()
|
139 |
+
experiment.append_configs(
|
140 |
+
initial_state=initial_state,
|
141 |
+
partial_state_update_blocks=partial_state_update_blocks,
|
142 |
+
sim_configs=sim_config
|
143 |
+
)
|
144 |
+
|
145 |
+
return experiment
|
146 |
+
|
147 |
+
partial_state_update_blocks = [
|
148 |
+
{
|
149 |
+
'policies': {
|
150 |
+
'p_value_flow': p_value_flow
|
151 |
+
},
|
152 |
+
'variables': {
|
153 |
+
'funding_pool': s_funding_pool,
|
154 |
+
'researcher_value': s_researcher_value,
|
155 |
+
'journal_value': s_journal_value,
|
156 |
+
'losses': s_losses
|
157 |
+
}
|
158 |
+
}
|
159 |
+
]
|
160 |
+
|
161 |
+
def execute_simulation(experiment):
|
162 |
+
exec_context = ExecutionContext()
|
163 |
+
configs = experiment.configs
|
164 |
+
simulation = Executor(exec_context=exec_context, configs=configs)
|
165 |
+
raw_result, tensor_field, sessions = simulation.execute()
|
166 |
+
|
167 |
+
return raw_result
|
168 |
+
|
169 |
+
if st.button('Run Simulation'):
|
170 |
+
sim_config = generate_sim_config()
|
171 |
+
experiment = configure_experiment(initial_state, partial_state_update_blocks, sim_config)
|
172 |
+
raw_result = execute_simulation(experiment)
|
173 |
+
df = pd.DataFrame(raw_result)
|
174 |
+
fig1 = df.plot(kind='line', x='timestep', y=['funding_pool','researcher_value', 'journal_value'], width=1000)
|
175 |
+
fig2 = df.plot(kind='line', x='timestep', y=['funding_pool', 'losses'], width=1000)
|
176 |
+
st.subheader('Results')
|
177 |
+
st.plotly_chart(fig1)
|
178 |
+
st.plotly_chart(fig2)
|