File size: 10,666 Bytes
458aa75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9063e5
 
 
 
 
458aa75
 
 
c9063e5
 
 
458aa75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import pandas as pd
import numpy as np
from random import normalvariate, random
import plotly.express as px

from radcad import Model, Simulation, Experiment
import streamlit as st


# Additional dependencies

# For analytics
import numpy as np
# For visualization
import plotly.express as px

from PIL import Image
# Additional dependencies


pd.options.plotting.backend = "plotly"

st.header('DeSci Value Flow Model')
image = Image.open('desci.png')
st.image(image, caption='DeSci value flow schema')


def p_researcher1(params, substep, state_history, previous_state):
    losses = 0
    to_market = 0
    to_researcher = 0
    to_treasury = 0
    to_other_researcher = 0
    salary = 0
    funding = 0
    if (previous_state['timestep'] < params['timestep_switch']) and (previous_state['funding_pool'] > params['funding_round']):
        funding = params['funding_round']
        to_treasury -= funding
        research_value = funding * (1-params['epsilon'])
        losses += funding - research_value

        salary = research_value * params['beta']
        to_market = research_value
        if (random() < params['probability_buying']) and (previous_state['researcher1_value'] > params['cost_buying']):
            salary = salary - params['cost_buying']
            tx_fee = params['cost_buying'] * params['tx_fee']
            salary -= tx_fee
            to_treasury += tx_fee
            to_other_researcher += params['cost_buying']
        to_researcher += salary + research_value
    elif (previous_state['timestep'] > params['timestep_switch']) and (previous_state['researcher1_value'] > params['cost_buying']):
        tx_fee = params['cost_buying'] * params['tx_fee']
        to_researcher -= params['cost_buying'] - tx_fee
        to_other_researcher += params['cost_buying']
        to_treasury += tx_fee
    return {'update_researcher1_funding': funding,
                'update_researcher1_salary': salary,
                'update_researcher1_value': to_researcher,
                'update_funding_pool': to_treasury,
                'update_market': to_market,
                'update_researcher2_value': to_other_researcher,
                'update_losses': losses}

def p_researcher2(params, substep, state_history, previous_state):
    losses = 0
    to_market = 0
    to_researcher = 0
    to_treasury = 0
    to_other_researcher = 0
    salary = 0
    funding = 0
    if (previous_state['timestep'] > params['timestep_switch']) and (previous_state['funding_pool'] > params['funding_round']):
        funding = params['funding_round']
        to_treasury -= funding
        research_value = funding * (1-params['epsilon'])
        losses += funding - research_value

        salary = research_value * params['beta']
        to_market = research_value
        if (random() < params['probability_buying']) and (previous_state['researcher2_value'] > params['cost_buying']):
            salary = salary - params['cost_buying']
            tx_fee = params['cost_buying'] * params['tx_fee']
            salary -= tx_fee
            to_treasury += tx_fee
            to_other_researcher += params['cost_buying']
        to_researcher += salary + research_value
    elif (previous_state['timestep'] < params['timestep_switch']) and (previous_state['researcher2_value'] > params['cost_buying']):
        tx_fee = params['cost_buying'] * params['tx_fee']
        to_researcher -= params['cost_buying'] - tx_fee
        to_other_researcher += params['cost_buying']
        to_treasury += tx_fee
    return {'update_researcher2_funding': funding,
                'update_researcher2_salary': salary,
                'update_researcher2_value': to_researcher,
                'update_funding_pool': to_treasury,
                'update_market': to_market,
                'update_researcher1_value': to_other_researcher,
                'update_losses': losses}

def s_timestep(params, substep, state_history, previous_state, policy_input):
    updated_timestep = previous_state['timestep'] + 1
    return 'timestep', updated_timestep

def s_funding_pool(params, substep, state_history, previous_state, policy_input):
    funding_pool = previous_state['funding_pool']
    updated_funding_pool = funding_pool + policy_input['update_funding_pool']
    return 'funding_pool', updated_funding_pool

def s_researcher1_value(params, substep, state_history, previous_state, policy_input):
    r_value = previous_state['researcher1_value']
    updated_researcher1_value = r_value + policy_input['update_researcher1_value']
    return 'researcher1_value', updated_researcher1_value

def s_researcher1_funding(params, substep, state_history, previous_state, policy_input):
    r_funding = previous_state['researcher1_funding']
    updated_researcher1_funding = r_funding + policy_input['update_researcher1_funding']
    return 'researcher1_funding', updated_researcher1_funding

def s_researcher1_salary(params, substep, state_history, previous_state, policy_input):
    r_salary = previous_state['researcher1_salary']
    updated_researcher1_salary = r_salary + policy_input['update_researcher1_salary']
    return 'researcher1_salary', updated_researcher1_salary

def s_researcher2_value(params, substep, state_history, previous_state, policy_input):
    r_value = previous_state['researcher2_value']
    updated_researcher2_value = r_value + policy_input['update_researcher2_value']
    return 'researcher2_value', updated_researcher2_value

def s_researcher2_funding(params, substep, state_history, previous_state, policy_input):
    r_funding = previous_state['researcher2_funding']
    updated_researcher2_funding = r_funding + policy_input['update_researcher2_funding']
    return 'researcher2_funding', updated_researcher2_funding

def s_researcher2_salary(params, substep, state_history, previous_state, policy_input):
    r_salary = previous_state['researcher2_salary']
    updated_researcher2_salary = r_salary + policy_input['update_researcher2_salary']
    return 'researcher2_salary', updated_researcher2_salary

def s_knowledge_market(params, substep, state_history, previous_state, policy_input):
    value = previous_state['knowledge_market_value']
    updated_market_value = value + policy_input['update_market']
    return 'knowledge_market_value', updated_market_value

def s_losses(params, substep, state_history, previous_state, policy_input):
    losses = previous_state['losses']
    updated_losses = losses + policy_input['update_losses']
    return 'losses', updated_losses

st.subheader('Initial Value Allocation')
funding_pool = st.slider('Initial Funding Pool', min_value=1000, max_value=10000, value=1000, step=10)
researcher1_value = st.slider('Researcher1 Tokens', min_value=0, max_value=1000, value=0, step=1)
researcher2_value = st.slider('Researcher2 Tokens', min_value=0, max_value=1000, value=0, step=1)
st.subheader('Simulation Parameters')
tx_fee = st.slider('Transaction fee collected by DAO treasury during each transaction in the knowledge market', min_value=0., max_value=1., value=0.1, step=0.0001)
st.write('Set the funding disbursed each round from the funding pool')
funding_round = st.slider('Funding Round', min_value=100, max_value=1000, value=100, step=1)
st.write('Set the relative value leakages in the model.')
epsilon = st.slider('Work Inefficiency Weight', min_value=0., max_value=1., value=0.1, step=0.0001)
st.write('Set the portion of grant funding to be used as researcher salary.')
beta = st.slider('Salary Weight', min_value=0., max_value=1., value=0.4, step=0.0001)
st.write('Set the cost of getting access to papers in the knowledge market.')
cost_buying = st.slider('Cost of Buying', min_value=10., max_value=100., value=10., step=0.1)
st.write('Set the probability a researcher will buy access to a paper at each timestep.')
probability_buying = st.slider('Researcher Probability of Buying', min_value=0., max_value=1., value=0.1, step=0.0001)
st.write('Set the number of timesteps in the simulation.')
timesteps = st.slider('Timesteps', min_value=10, max_value=1000, value=100, step=1)

initial_state = {
    'funding_pool': funding_pool,
    'researcher1_value': researcher1_value,
    'researcher1_funding': 0,
    'researcher1_salary': 0,
    'researcher2_value': researcher2_value,
    'researcher2_funding': 0,
    'researcher2_salary': 0,
    'knowledge_market_value': 0,
    'timestep': 0,
    'losses': 0
}
ts = int(timesteps/2)

system_params = {
    'funding_pool': [funding_pool],
    'funding_round': [funding_round],
    'beta': [beta],
    'epsilon': [epsilon],
    'cost_buying': [cost_buying],
    'probability_buying': [probability_buying],
    'timestep_switch': [ts],
    'tx_fee': [tx_fee]
}

def configure_and_run_experiment(initial_state,
                      partial_state_update_blocks,
                      timesteps):
    model = Model(
    # Model initial state
    initial_state=initial_state,
    # Model Partial State Update Blocks
    state_update_blocks=partial_state_update_blocks,
    # System Parameters
    params=system_params
    )
    simulation = Simulation(
    model=model,
    timesteps=timesteps,  # Number of timesteps
    runs=1  # Number of Monte Carlo Runs
    )   

    result = simulation.run()
    return result

partial_state_update_blocks = [
    {
        'policies': {
            'p_researcher1': p_researcher1,
            'p_researcher2': p_researcher2
        },
        'variables': {
            'timestep': s_timestep,
            'funding_pool': s_funding_pool,
            'researcher1_value': s_researcher1_value,
            'researcher1_funding': s_researcher1_funding,
            'researcher1_salary': s_researcher1_salary,
            'researcher2_value': s_researcher2_value,
            'researcher2_funding': s_researcher2_funding,
            'researcher2_salary': s_researcher2_salary,
            'knowledge_market_value': s_knowledge_market,
            'losses': s_losses
        }
    }
]

if st.button('Run Simulation'):
    raw_result = configure_and_run_experiment(initial_state, partial_state_update_blocks, timesteps)
    df = pd.DataFrame(raw_result)
    fig1 = df.plot(kind='line', x='timestep', y=['funding_pool', 'researcher1_value', 'researcher2_value'], width=1000)
    fig2 = df.plot(kind='line', x='timestep', y=['funding_pool','knowledge_market_value'], width=1000)
    fig3 = df.plot(kind='line', x='timestep', y=['funding_pool', 'losses'], width=1000)
    fig4 = df.plot(kind='line', x='timestep', y=['researcher1_value', 'researcher2_value', 'losses'], width=1000)
    st.subheader('Results')
    st.plotly_chart(fig1)
    st.plotly_chart(fig2)
    st.plotly_chart(fig3)
    st.plotly_chart(fig4)