File size: 3,051 Bytes
a71c613
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import os, subprocess, sys

os.environ["HF_HUB_DISABLE_SYMLINKS_WARNING"] = "1"
os.environ["HF_HUB_DISABLE_HF_TRANSFER"] = "1"
os.environ["HF_HUB_ENABLE_XET"] = "0"

os.environ["NUMBA_CACHE_DIR"] = "/tmp/numba_cache"
os.makedirs("/tmp/numba_cache", exist_ok=True)
os.environ["NUMBA_DISABLE_JIT"] = "1"

from huggingface_hub import HfApi, HfFolder, upload_folder, snapshot_download

# 🔒 Eliminar hf_transfer si está presente
subprocess.run([sys.executable, "-m", "pip", "uninstall", "-y", "hf_transfer"])

# === Configuración ===
HF_MODEL_ID = "tu_usuario/xtts-v2-finetuned"   # <--- cambia con tu repo en HF
HF_TOKEN = os.environ.get("HF_TOKEN")          # Debe estar definido en tu Space/entorno
DATASET_PATH = "/home/user/app/dataset"        # Ruta a tu dataset
OUTPUT_PATH = "/tmp/output_model"
BASE_MODEL = "coqui/XTTS-v2"

os.makedirs("/tmp/xtts_cache", exist_ok=True)
os.chmod("/tmp/xtts_cache", 0o777)

os.makedirs("/tmp/xtts_model", exist_ok=True)
os.chmod("/tmp/xtts_model", 0o777)

os.makedirs("/tmp/xtts_model/.huggingface", exist_ok=True)
os.chmod("/tmp/xtts_model/.huggingface", 0o777)

# Continúa con tu lógica, usando las nuevas rutas de manera consistent

# 🔧 Forzar descarga sin symlinks ni hf_transfer
model_dir = snapshot_download(
    repo_id="coqui/XTTS-v2",
    local_dir="/tmp/xtts_model",   # descarga directa aquí
    cache_dir="/tmp/hf_cache",     # cache seguro en /tmp
    #local_dir_use_symlinks=False,  # 🔑 evita enlaces simbólicos
    resume_download=True,
    token=HF_TOKEN
)

print(f"✅ Modelo descargado en: {model_dir}")


CONFIG_PATH = "/tmp/xtts_model/config.json"
RESTORE_PATH = "/tmp/xtts_model/model.pth"

# === 2. Editar configuración para tu dataset VoxPopuli ===
print("=== Editando configuración para fine-tuning con VoxPopuli ===")
import json
with open(CONFIG_PATH, "r") as f:
    config = json.load(f)

config["output_path"] = OUTPUT_PATH
config["datasets"] = [
    {
        "formatter": "voxpopuli",
        "path": DATASET_PATH,
        "meta_file_train": "metadata.json"
    }
]
config["run_name"] = "xtts-finetune-voxpopuli"
config["lr"] = 1e-5  # más bajo para fine-tuning

with open(CONFIG_PATH, "w") as f:
    json.dump(config, f, indent=2)

# === 3. Lanzar entrenamiento ===
print("=== Iniciando fine-tuning de XTTS-v2 ===")

import librosa
from librosa.core.spectrum import magphase

# Parchear dinámicamente
librosa.magphase = magphase

# subprocess.run([
#    "python", "/home/user/TTS/TTS/bin/train_tts.py",
#    "--config_path", CONFIG_PATH,
#    "--restore_path", RESTORE_PATH
# ], check=True)

subprocess.run([
    "python", "-m", "TTS.bin.train",
    "--config_path", CONFIG_PATH,
    "--restore_path", RESTORE_PATH
], check=True)

# === 4. Subir modelo resultante a HF ===
print("=== Subiendo modelo fine-tuneado a Hugging Face Hub ===")
api = HfApi()
HfFolder.save_token(HF_TOKEN)

upload_folder(
    repo_id=HF_MODEL_ID,
    repo_type="model",
    folder_path=OUTPUT_PATH,
    token=HF_TOKEN
)

print("✅ Fine-tuning completado y modelo subido a Hugging Face.")