Spaces:
Runtime error
Runtime error
File size: 8,752 Bytes
bfd1232 dac5923 bfd1232 ecaba54 d224260 ecaba54 d224260 bfd1232 7413619 fbff009 7413619 fbff009 7413619 fbff009 bfd1232 41373a9 b177a4f b01fb24 a72d6f1 b177a4f bfd1232 83d9ea7 bfd1232 6a2eecb 1a5ab50 bfd1232 c89fc7f bfd1232 c89fc7f 1a5ab50 c89fc7f bfd1232 c89fc7f bfd1232 0e4ba1e c89fc7f 0e4ba1e 013568d bfd1232 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
import os
import torch
# 🔒 Permitir deserialización segura de configuraciones XTTS
from TTS.tts.configs.xtts_config import XttsConfig
from TTS.tts.models.xtts import XttsAudioConfig
torch.serialization.add_safe_globals([XttsConfig, XttsAudioConfig])
from trainer import Trainer, TrainerArgs
from TTS.config.shared_configs import BaseDatasetConfig
from TTS.tts.datasets import load_tts_samples
from TTS.tts.layers.xtts.trainer.gpt_trainer import GPTArgs, GPTTrainer, GPTTrainerConfig, XttsAudioConfig
from TTS.utils.manage import ModelManager
class StopTraining(Exception):
pass
class EpochLimitTrainer(Trainer):
def __init__(self, max_epochs, *args, **kwargs):
super().__init__(*args, **kwargs)
self.max_epochs = max_epochs
self.current_epoch = 0
def train_epoch(self):
if self.current_epoch >= self.max_epochs:
print(f"✅ Entrenamiento detenido tras {self.max_epochs} epochs.")
raise StopTraining
print(f"👉 Epoch {self.current_epoch+1}/{self.max_epochs}")
self.current_epoch += 1
return super().train_epoch()
def fit(self):
try:
super().fit()
except StopTraining:
print("🏁 Entrenamiento finalizado de forma controlada.")
# 🔒 Guardar modelo final aunque no toque save_step
final_ckpt = os.path.join(self.output_path, "final_model.pth")
print(f"💾 Guardando checkpoint final en {final_ckpt}")
self.save_checkpoint(final_ckpt)
# Logging parameters
RUN_NAME = "GPT_XTTS_v2.0_LJSpeech_FT"
PROJECT_NAME = "XTTS_trainer"
DASHBOARD_LOGGER = "tensorboard"
LOGGER_URI = None
# Set here the path that the checkpoints will be saved. Default: ./run/training/
OUT_PATH = "/tmp/output_model/run/training"
# Training Parameters
OPTIMIZER_WD_ONLY_ON_WEIGHTS = True # for multi-gpu training please make it False
START_WITH_EVAL = True # if True it will star with evaluation
BATCH_SIZE = 3 # set here the batch size
GRAD_ACUMM_STEPS = 84 # set here the grad accumulation steps
# Note: we recommend that BATCH_SIZE * GRAD_ACUMM_STEPS need to be at least 252 for more efficient training. You can increase/decrease BATCH_SIZE but then set GRAD_ACUMM_STEPS accordingly.
# Define here the dataset that you want to use for the fine-tuning on.
config_dataset = BaseDatasetConfig(
formatter="vctk",
dataset_name="voxpopuli",
path="/tmp/dataset",
# meta_file_train="metadata.csv",
# meta_file_val="metadata.csv", # importante si también lo usas para validación
language="es",
)
# Add here the configs of the datasets
DATASETS_CONFIG_LIST = [config_dataset]
# Define the path where XTTS v2.0.1 files will be downloaded
CHECKPOINTS_OUT_PATH = os.path.join(OUT_PATH, "XTTS_v2.0_original_model_files/")
os.makedirs(CHECKPOINTS_OUT_PATH, exist_ok=True)
# DVAE files
DVAE_CHECKPOINT_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/dvae.pth"
MEL_NORM_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/mel_stats.pth"
# Set the path to the downloaded files
DVAE_CHECKPOINT = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(DVAE_CHECKPOINT_LINK))
MEL_NORM_FILE = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(MEL_NORM_LINK))
# download DVAE files if needed
if not os.path.isfile(DVAE_CHECKPOINT) or not os.path.isfile(MEL_NORM_FILE):
print(" > Downloading DVAE files!")
ModelManager._download_model_files([MEL_NORM_LINK, DVAE_CHECKPOINT_LINK], CHECKPOINTS_OUT_PATH, progress_bar=True)
# Download XTTS v2.0 checkpoint if needed
TOKENIZER_FILE_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/vocab.json"
XTTS_CHECKPOINT_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/model.pth"
# XTTS transfer learning parameters: You we need to provide the paths of XTTS model checkpoint that you want to do the fine tuning.
TOKENIZER_FILE = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(TOKENIZER_FILE_LINK)) # vocab.json file
XTTS_CHECKPOINT = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(XTTS_CHECKPOINT_LINK)) # model.pth file
# download XTTS v2.0 files if needed
if not os.path.isfile(TOKENIZER_FILE) or not os.path.isfile(XTTS_CHECKPOINT):
print(" > Downloading XTTS v2.0 files!")
ModelManager._download_model_files(
[TOKENIZER_FILE_LINK, XTTS_CHECKPOINT_LINK], CHECKPOINTS_OUT_PATH, progress_bar=True
)
# Training sentences generations
SPEAKER_REFERENCE = [
"./tests/data/ljspeech/wavs/LJ001-0002.wav" # speaker reference to be used in training test sentences
]
LANGUAGE = config_dataset.language
def main():
# init args and config
model_args = GPTArgs(
max_conditioning_length=132300, # 6 secs
min_conditioning_length=66150, # 3 secs
debug_loading_failures=False,
max_wav_length=255995, # ~11.6 seconds
max_text_length=239,
mel_norm_file=MEL_NORM_FILE,
dvae_checkpoint=DVAE_CHECKPOINT,
xtts_checkpoint=XTTS_CHECKPOINT, # checkpoint path of the model that you want to fine-tune
tokenizer_file=TOKENIZER_FILE,
gpt_num_audio_tokens=1026,
gpt_start_audio_token=1024,
gpt_stop_audio_token=1025,
gpt_use_masking_gt_prompt_approach=True,
gpt_use_perceiver_resampler=True,
)
# define audio config
audio_config = XttsAudioConfig(sample_rate=22050, dvae_sample_rate=22050, output_sample_rate=24000)
# training parameters config
config = GPTTrainerConfig(
output_path=OUT_PATH,
model_args=model_args,
run_name=RUN_NAME,
project_name=PROJECT_NAME,
run_description="""
GPT XTTS training
""",
dashboard_logger=DASHBOARD_LOGGER,
logger_uri=LOGGER_URI,
audio=audio_config,
batch_size=BATCH_SIZE,
batch_group_size=48,
eval_batch_size=BATCH_SIZE,
num_loader_workers=8,
eval_split_max_size=256,
print_step=50,
plot_step=100,
log_model_step=1000,
save_step=10000,
save_n_checkpoints=1,
save_checkpoints=True,
# target_loss="loss",
print_eval=False,
# Optimizer values like tortoise, pytorch implementation with modifications to not apply WD to non-weight parameters.
optimizer="AdamW",
optimizer_wd_only_on_weights=OPTIMIZER_WD_ONLY_ON_WEIGHTS,
optimizer_params={"betas": [0.9, 0.96], "eps": 1e-8, "weight_decay": 1e-2},
lr=5e-06, # learning rate
lr_scheduler="MultiStepLR",
# it was adjusted accordly for the new step scheme
lr_scheduler_params={"milestones": [50000 * 18, 150000 * 18, 300000 * 18], "gamma": 0.5, "last_epoch": -1},
#test_sentences=[
# {
# "text": "It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent.",
# "speaker_wav": SPEAKER_REFERENCE,
# "language": LANGUAGE,
# },
# {
# "text": "This cake is great. It's so delicious and moist.",
# "speaker_wav": SPEAKER_REFERENCE,
# "language": LANGUAGE,
# },
#],
epochs=150,
)
# init the model from config
model = GPTTrainer.init_from_config(config)
# load training samples
train_samples, eval_samples = load_tts_samples(
DATASETS_CONFIG_LIST,
eval_split=True,
eval_split_max_size=config.eval_split_max_size,
eval_split_size=config.eval_split_size,
)
# init the trainer and 🚀
#trainer = Trainer(
# TrainerArgs(
# restore_path=None, # xtts checkpoint is restored via xtts_checkpoint key so no need of restore it using Trainer restore_path parameter
# skip_train_epoch=False,
# start_with_eval=START_WITH_EVAL,
# grad_accum_steps=GRAD_ACUMM_STEPS,
# ),
# config,
# output_path=OUT_PATH,
# model=model,
# train_samples=train_samples,
# eval_samples=eval_samples,
#)
trainer = EpochLimitTrainer(
max_epochs=150,
args=TrainerArgs(
restore_path=None,
skip_train_epoch=False,
start_with_eval=START_WITH_EVAL,
grad_accum_steps=GRAD_ACUMM_STEPS,
),
config=config,
output_path=OUT_PATH,
model=model,
train_samples=train_samples,
eval_samples=eval_samples,
)
trainer.fit()
#trainer.init_training()
#max_epochs = 5
#for epoch in range(max_epochs):
# trainer.train_epoch() # entrena una época
# trainer.eval_epoch() # evalúa
if __name__ == "__main__":
main() |