File size: 8,752 Bytes
bfd1232
dac5923
bfd1232
ecaba54
d224260
ecaba54
 
d224260
bfd1232
 
 
 
 
 
 
7413619
 
 
 
fbff009
 
 
 
7413619
fbff009
 
7413619
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fbff009
bfd1232
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41373a9
b177a4f
b01fb24
a72d6f1
 
b177a4f
bfd1232
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83d9ea7
bfd1232
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a2eecb
 
 
 
 
 
 
 
 
 
 
 
1a5ab50
bfd1232
 
 
 
 
 
 
 
 
 
 
 
c89fc7f
bfd1232
c89fc7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a5ab50
c89fc7f
 
bfd1232
 
 
 
c89fc7f
bfd1232
 
 
 
 
0e4ba1e
c89fc7f
0e4ba1e
 
 
 
 
013568d
bfd1232
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import os
import torch

# 🔒 Permitir deserialización segura de configuraciones XTTS
from TTS.tts.configs.xtts_config import XttsConfig
from TTS.tts.models.xtts import XttsAudioConfig
torch.serialization.add_safe_globals([XttsConfig, XttsAudioConfig])

from trainer import Trainer, TrainerArgs

from TTS.config.shared_configs import BaseDatasetConfig
from TTS.tts.datasets import load_tts_samples
from TTS.tts.layers.xtts.trainer.gpt_trainer import GPTArgs, GPTTrainer, GPTTrainerConfig, XttsAudioConfig
from TTS.utils.manage import ModelManager

class StopTraining(Exception):
    pass


class EpochLimitTrainer(Trainer):
    def __init__(self, max_epochs, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.max_epochs = max_epochs
        self.current_epoch = 0

    def train_epoch(self):
        if self.current_epoch >= self.max_epochs:
            print(f"✅ Entrenamiento detenido tras {self.max_epochs} epochs.")
            raise StopTraining
        print(f"👉 Epoch {self.current_epoch+1}/{self.max_epochs}")
        self.current_epoch += 1
        return super().train_epoch()

    def fit(self):
        try:
            super().fit()
        except StopTraining:
            print("🏁 Entrenamiento finalizado de forma controlada.")
            # 🔒 Guardar modelo final aunque no toque save_step
            final_ckpt = os.path.join(self.output_path, "final_model.pth")
            print(f"💾 Guardando checkpoint final en {final_ckpt}")
            self.save_checkpoint(final_ckpt)


# Logging parameters
RUN_NAME = "GPT_XTTS_v2.0_LJSpeech_FT"
PROJECT_NAME = "XTTS_trainer"
DASHBOARD_LOGGER = "tensorboard"
LOGGER_URI = None

# Set here the path that the checkpoints will be saved. Default: ./run/training/
OUT_PATH = "/tmp/output_model/run/training"


# Training Parameters
OPTIMIZER_WD_ONLY_ON_WEIGHTS = True  # for multi-gpu training please make it False
START_WITH_EVAL = True  # if True it will star with evaluation
BATCH_SIZE = 3  # set here the batch size
GRAD_ACUMM_STEPS = 84  # set here the grad accumulation steps
# Note: we recommend that BATCH_SIZE * GRAD_ACUMM_STEPS need to be at least 252 for more efficient training. You can increase/decrease BATCH_SIZE but then set GRAD_ACUMM_STEPS accordingly.

# Define here the dataset that you want to use for the fine-tuning on.
config_dataset = BaseDatasetConfig(
    formatter="vctk",
    dataset_name="voxpopuli",
    path="/tmp/dataset",
#    meta_file_train="metadata.csv",
#    meta_file_val="metadata.csv",  # importante si también lo usas para validación
    language="es",
)

# Add here the configs of the datasets
DATASETS_CONFIG_LIST = [config_dataset]

# Define the path where XTTS v2.0.1 files will be downloaded
CHECKPOINTS_OUT_PATH = os.path.join(OUT_PATH, "XTTS_v2.0_original_model_files/")
os.makedirs(CHECKPOINTS_OUT_PATH, exist_ok=True)


# DVAE files
DVAE_CHECKPOINT_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/dvae.pth"
MEL_NORM_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/mel_stats.pth"

# Set the path to the downloaded files
DVAE_CHECKPOINT = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(DVAE_CHECKPOINT_LINK))
MEL_NORM_FILE = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(MEL_NORM_LINK))

# download DVAE files if needed
if not os.path.isfile(DVAE_CHECKPOINT) or not os.path.isfile(MEL_NORM_FILE):
    print(" > Downloading DVAE files!")
    ModelManager._download_model_files([MEL_NORM_LINK, DVAE_CHECKPOINT_LINK], CHECKPOINTS_OUT_PATH, progress_bar=True)


# Download XTTS v2.0 checkpoint if needed
TOKENIZER_FILE_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/vocab.json"
XTTS_CHECKPOINT_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/model.pth"

# XTTS transfer learning parameters: You we need to provide the paths of XTTS model checkpoint that you want to do the fine tuning.
TOKENIZER_FILE = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(TOKENIZER_FILE_LINK))  # vocab.json file
XTTS_CHECKPOINT = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(XTTS_CHECKPOINT_LINK))  # model.pth file

# download XTTS v2.0 files if needed
if not os.path.isfile(TOKENIZER_FILE) or not os.path.isfile(XTTS_CHECKPOINT):
    print(" > Downloading XTTS v2.0 files!")
    ModelManager._download_model_files(
        [TOKENIZER_FILE_LINK, XTTS_CHECKPOINT_LINK], CHECKPOINTS_OUT_PATH, progress_bar=True
    )


# Training sentences generations
SPEAKER_REFERENCE = [
    "./tests/data/ljspeech/wavs/LJ001-0002.wav"  # speaker reference to be used in training test sentences
]
LANGUAGE = config_dataset.language


def main():
    # init args and config
    model_args = GPTArgs(
        max_conditioning_length=132300,  # 6 secs
        min_conditioning_length=66150,  # 3 secs
        debug_loading_failures=False,
        max_wav_length=255995,  # ~11.6 seconds
        max_text_length=239,
        mel_norm_file=MEL_NORM_FILE,
        dvae_checkpoint=DVAE_CHECKPOINT,
        xtts_checkpoint=XTTS_CHECKPOINT,  # checkpoint path of the model that you want to fine-tune
        tokenizer_file=TOKENIZER_FILE,
        gpt_num_audio_tokens=1026,
        gpt_start_audio_token=1024,
        gpt_stop_audio_token=1025,
        gpt_use_masking_gt_prompt_approach=True,
        gpt_use_perceiver_resampler=True,
    )
    # define audio config
    audio_config = XttsAudioConfig(sample_rate=22050, dvae_sample_rate=22050, output_sample_rate=24000)
    # training parameters config
    config = GPTTrainerConfig(
        output_path=OUT_PATH,
        model_args=model_args,
        run_name=RUN_NAME,
        project_name=PROJECT_NAME,
        run_description="""
            GPT XTTS training
            """,
        dashboard_logger=DASHBOARD_LOGGER,
        logger_uri=LOGGER_URI,
        audio=audio_config,
        batch_size=BATCH_SIZE,
        batch_group_size=48,
        eval_batch_size=BATCH_SIZE,
        num_loader_workers=8,
        eval_split_max_size=256,
        print_step=50,
        plot_step=100,
        log_model_step=1000,
        save_step=10000,
        save_n_checkpoints=1,
        save_checkpoints=True,
        # target_loss="loss",
        print_eval=False,
        # Optimizer values like tortoise, pytorch implementation with modifications to not apply WD to non-weight parameters.
        optimizer="AdamW",
        optimizer_wd_only_on_weights=OPTIMIZER_WD_ONLY_ON_WEIGHTS,
        optimizer_params={"betas": [0.9, 0.96], "eps": 1e-8, "weight_decay": 1e-2},
        lr=5e-06,  # learning rate
        lr_scheduler="MultiStepLR",
        # it was adjusted accordly for the new step scheme
        lr_scheduler_params={"milestones": [50000 * 18, 150000 * 18, 300000 * 18], "gamma": 0.5, "last_epoch": -1},
        #test_sentences=[
        #    {
        #        "text": "It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent.",
        #        "speaker_wav": SPEAKER_REFERENCE,
        #        "language": LANGUAGE,
        #    },
        #    {
        #        "text": "This cake is great. It's so delicious and moist.",
        #        "speaker_wav": SPEAKER_REFERENCE,
        #        "language": LANGUAGE,
        #    },
        #],
        epochs=150,
    )

    # init the model from config
    model = GPTTrainer.init_from_config(config)

    # load training samples
    train_samples, eval_samples = load_tts_samples(
        DATASETS_CONFIG_LIST,
        eval_split=True,
        eval_split_max_size=config.eval_split_max_size,
        eval_split_size=config.eval_split_size,
    )
    
    # init the trainer and 🚀
    #trainer = Trainer(
    #    TrainerArgs(
    #        restore_path=None,  # xtts checkpoint is restored via xtts_checkpoint key so no need of restore it using Trainer restore_path parameter
    #        skip_train_epoch=False,
    #        start_with_eval=START_WITH_EVAL,
    #        grad_accum_steps=GRAD_ACUMM_STEPS,
    #    ),
    #    config,
    #    output_path=OUT_PATH,
    #    model=model,
    #    train_samples=train_samples,
    #    eval_samples=eval_samples,
    #)

    trainer = EpochLimitTrainer(
        max_epochs=150,
        args=TrainerArgs(
            restore_path=None,
            skip_train_epoch=False,
            start_with_eval=START_WITH_EVAL,
            grad_accum_steps=GRAD_ACUMM_STEPS,
        ),
        config=config,
        output_path=OUT_PATH,
        model=model,
        train_samples=train_samples,
        eval_samples=eval_samples,
    )
    
    trainer.fit()
    #trainer.init_training()
    #max_epochs = 5
    #for epoch in range(max_epochs):
    #    trainer.train_epoch()   # entrena una época
    #    trainer.eval_epoch()    # evalúa



if __name__ == "__main__":
    main()