Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	| import os | |
| import torch | |
| # 🔒 Permitir deserialización segura de configuraciones XTTS | |
| from TTS.tts.configs.xtts_config import XttsConfig | |
| from TTS.tts.models.xtts import XttsAudioConfig | |
| torch.serialization.add_safe_globals([XttsConfig, XttsAudioConfig]) | |
| from trainer import Trainer, TrainerArgs | |
| from TTS.config.shared_configs import BaseDatasetConfig | |
| from TTS.tts.datasets import load_tts_samples | |
| from TTS.tts.layers.xtts.trainer.gpt_trainer import GPTArgs, GPTTrainer, GPTTrainerConfig, XttsAudioConfig | |
| from TTS.utils.manage import ModelManager | |
| # Logging parameters | |
| RUN_NAME = "GPT_XTTS_v2.0_LJSpeech_FT" | |
| PROJECT_NAME = "XTTS_trainer" | |
| DASHBOARD_LOGGER = "tensorboard" | |
| LOGGER_URI = None | |
| # Set here the path that the checkpoints will be saved. Default: ./run/training/ | |
| OUT_PATH = "/tmp/output_model/run/training" | |
| # Training Parameters | |
| OPTIMIZER_WD_ONLY_ON_WEIGHTS = True # for multi-gpu training please make it False | |
| START_WITH_EVAL = True # if True it will star with evaluation | |
| BATCH_SIZE = 3 # set here the batch size | |
| GRAD_ACUMM_STEPS = 84 # set here the grad accumulation steps | |
| # Note: we recommend that BATCH_SIZE * GRAD_ACUMM_STEPS need to be at least 252 for more efficient training. You can increase/decrease BATCH_SIZE but then set GRAD_ACUMM_STEPS accordingly. | |
| # Define here the dataset that you want to use for the fine-tuning on. | |
| config_dataset = BaseDatasetConfig( | |
| formatter="ljspeech", | |
| dataset_name="voxpopuli", | |
| path="/tmp/dataset/voxpopuli_es_500", | |
| meta_file_train="/tmp/dataset/voxpopuli_es_500/metadata.csv", | |
| language="es", | |
| ) | |
| # Add here the configs of the datasets | |
| DATASETS_CONFIG_LIST = [config_dataset] | |
| # Define the path where XTTS v2.0.1 files will be downloaded | |
| CHECKPOINTS_OUT_PATH = os.path.join(OUT_PATH, "XTTS_v2.0_original_model_files/") | |
| os.makedirs(CHECKPOINTS_OUT_PATH, exist_ok=True) | |
| # DVAE files | |
| DVAE_CHECKPOINT_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/dvae.pth" | |
| MEL_NORM_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/mel_stats.pth" | |
| # Set the path to the downloaded files | |
| DVAE_CHECKPOINT = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(DVAE_CHECKPOINT_LINK)) | |
| MEL_NORM_FILE = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(MEL_NORM_LINK)) | |
| # download DVAE files if needed | |
| if not os.path.isfile(DVAE_CHECKPOINT) or not os.path.isfile(MEL_NORM_FILE): | |
| print(" > Downloading DVAE files!") | |
| ModelManager._download_model_files([MEL_NORM_LINK, DVAE_CHECKPOINT_LINK], CHECKPOINTS_OUT_PATH, progress_bar=True) | |
| # Download XTTS v2.0 checkpoint if needed | |
| TOKENIZER_FILE_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/vocab.json" | |
| XTTS_CHECKPOINT_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/model.pth" | |
| # XTTS transfer learning parameters: You we need to provide the paths of XTTS model checkpoint that you want to do the fine tuning. | |
| TOKENIZER_FILE = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(TOKENIZER_FILE_LINK)) # vocab.json file | |
| XTTS_CHECKPOINT = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(XTTS_CHECKPOINT_LINK)) # model.pth file | |
| # download XTTS v2.0 files if needed | |
| if not os.path.isfile(TOKENIZER_FILE) or not os.path.isfile(XTTS_CHECKPOINT): | |
| print(" > Downloading XTTS v2.0 files!") | |
| ModelManager._download_model_files( | |
| [TOKENIZER_FILE_LINK, XTTS_CHECKPOINT_LINK], CHECKPOINTS_OUT_PATH, progress_bar=True | |
| ) | |
| # Training sentences generations | |
| SPEAKER_REFERENCE = [ | |
| "./tests/data/ljspeech/wavs/LJ001-0002.wav" # speaker reference to be used in training test sentences | |
| ] | |
| LANGUAGE = config_dataset.language | |
| def main(): | |
| # init args and config | |
| model_args = GPTArgs( | |
| max_conditioning_length=132300, # 6 secs | |
| min_conditioning_length=66150, # 3 secs | |
| debug_loading_failures=False, | |
| max_wav_length=255995, # ~11.6 seconds | |
| max_text_length=200, | |
| mel_norm_file=MEL_NORM_FILE, | |
| dvae_checkpoint=DVAE_CHECKPOINT, | |
| xtts_checkpoint=XTTS_CHECKPOINT, # checkpoint path of the model that you want to fine-tune | |
| tokenizer_file=TOKENIZER_FILE, | |
| gpt_num_audio_tokens=1026, | |
| gpt_start_audio_token=1024, | |
| gpt_stop_audio_token=1025, | |
| gpt_use_masking_gt_prompt_approach=True, | |
| gpt_use_perceiver_resampler=True, | |
| ) | |
| # define audio config | |
| audio_config = XttsAudioConfig(sample_rate=22050, dvae_sample_rate=22050, output_sample_rate=24000) | |
| # training parameters config | |
| config = GPTTrainerConfig( | |
| output_path=OUT_PATH, | |
| model_args=model_args, | |
| run_name=RUN_NAME, | |
| project_name=PROJECT_NAME, | |
| run_description=""" | |
| GPT XTTS training | |
| """, | |
| dashboard_logger=DASHBOARD_LOGGER, | |
| logger_uri=LOGGER_URI, | |
| audio=audio_config, | |
| batch_size=BATCH_SIZE, | |
| batch_group_size=48, | |
| eval_batch_size=BATCH_SIZE, | |
| num_loader_workers=8, | |
| eval_split_max_size=256, | |
| print_step=50, | |
| plot_step=100, | |
| log_model_step=1000, | |
| save_step=10000, | |
| save_n_checkpoints=1, | |
| save_checkpoints=True, | |
| # target_loss="loss", | |
| print_eval=False, | |
| # Optimizer values like tortoise, pytorch implementation with modifications to not apply WD to non-weight parameters. | |
| optimizer="AdamW", | |
| optimizer_wd_only_on_weights=OPTIMIZER_WD_ONLY_ON_WEIGHTS, | |
| optimizer_params={"betas": [0.9, 0.96], "eps": 1e-8, "weight_decay": 1e-2}, | |
| lr=5e-06, # learning rate | |
| lr_scheduler="MultiStepLR", | |
| # it was adjusted accordly for the new step scheme | |
| lr_scheduler_params={"milestones": [50000 * 18, 150000 * 18, 300000 * 18], "gamma": 0.5, "last_epoch": -1}, | |
| test_sentences=[ | |
| { | |
| "text": "It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent.", | |
| "speaker_wav": SPEAKER_REFERENCE, | |
| "language": LANGUAGE, | |
| }, | |
| { | |
| "text": "This cake is great. It's so delicious and moist.", | |
| "speaker_wav": SPEAKER_REFERENCE, | |
| "language": LANGUAGE, | |
| }, | |
| ], | |
| ) | |
| # init the model from config | |
| model = GPTTrainer.init_from_config(config) | |
| # load training samples | |
| train_samples, eval_samples = load_tts_samples( | |
| DATASETS_CONFIG_LIST, | |
| eval_split=True, | |
| eval_split_max_size=config.eval_split_max_size, | |
| eval_split_size=config.eval_split_size, | |
| ) | |
| # init the trainer and 🚀 | |
| trainer = Trainer( | |
| TrainerArgs( | |
| restore_path=None, # xtts checkpoint is restored via xtts_checkpoint key so no need of restore it using Trainer restore_path parameter | |
| skip_train_epoch=False, | |
| start_with_eval=START_WITH_EVAL, | |
| grad_accum_steps=GRAD_ACUMM_STEPS, | |
| ), | |
| config, | |
| output_path=OUT_PATH, | |
| model=model, | |
| train_samples=train_samples, | |
| eval_samples=eval_samples, | |
| ) | |
| trainer.fit() | |
| if __name__ == "__main__": | |
| main() |