import os import gradio as gr import torch from transformers import AutoModelForCausalLM, AutoTokenizer from peft import PeftModel, PeftConfig MAX_NEW_TOKENS = 100 TEMPERATURE = 0.5 TOP_P = 0.95 TOP_K = 50 REPETITION_PENALTY = 1.05 SPECIAL_TOKEN = "->:" HF_TOKEN = os.getenv('HF_TOKEN') def load_model(): base_model_id = "meta-llama/Llama-2-7b-hf" peft_model_id = "somosnlp-hackathon-2025/Llama-2-7b-hf-lora-refranes" config = PeftConfig.from_pretrained(peft_model_id) base_model = AutoModelForCausalLM.from_pretrained( base_model_id, torch_dtype="auto", device_map="auto", token=HF_TOKEN ) model = PeftModel.from_pretrained(base_model, peft_model_id) tokenizer = AutoTokenizer.from_pretrained(base_model_id) if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token return model, tokenizer model = None tokenizer = None def generate_response(input_text, max_tokens, temperature, top_p, repetition_penalty): global model, tokenizer if model is None or tokenizer is None: model, tokenizer = load_model() inputs = tokenizer(input_text + SPECIAL_TOKEN, return_tensors="pt").to(model.device) with torch.no_grad(): outputs = model.generate( **inputs, max_new_tokens=max_tokens, temperature=temperature, do_sample=True, top_p=top_p, top_k=TOP_K, repetition_penalty=repetition_penalty ) full_response = tokenizer.decode(outputs[0], skip_special_tokens=True) if SPECIAL_TOKEN in full_response: response_parts = full_response.split(SPECIAL_TOKEN, 1) if len(response_parts) > 1: return response_parts[1].strip() return full_response.strip() def chat_interface(message, history, system_message, max_tokens, temperature, top_p, repetition_penalty): prompt = f"{message}" if system_message: prompt = f"{system_message}\n{message}" response = generate_response( prompt, max_tokens, temperature, top_p, repetition_penalty ) return response demo = gr.ChatInterface( chat_interface, title="Sabiduría Popular - Refranes", description="Esta aplicación explica el significado de refranes en español utilizando un modelo de lenguaje. Escribe un refrán y el modelo te explicará su significado.", examples=[ ["A caballo regalado no le mires el diente"], ["Más vale pájaro en mano que ciento volando"], ["Quien a buen árbol se arrima, buena sombra le cobija"], ["No por mucho madrugar amanece más temprano"] ], additional_inputs=[ gr.Textbox( value="Eres un experto en sabiduría popular española. Tu tarea es explicar el significado de refranes en español de manera clara y concisa.", label="System message" ), gr.Slider( minimum=1, maximum=500, value=MAX_NEW_TOKENS, step=1, label="Max new tokens" ), gr.Slider( minimum=0.1, maximum=2.0, value=TEMPERATURE, step=0.1, label="Temperature" ), gr.Slider( minimum=0.1, maximum=1.0, value=TOP_P, step=0.05, label="Top-p (nucleus sampling)" ), gr.Slider( minimum=1.0, maximum=2.0, value=REPETITION_PENALTY, step=0.05, label="Repetition penalty" ), ], theme="soft" ) if __name__ == "__main__": print("Iniciando la aplicación. El modelo se cargará con la primera consulta.") demo.launch()