Spaces:
Runtime error
Runtime error
File size: 3,106 Bytes
73ed896 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
# Pretrained models
The models will be downloaded automatically when you run the demo script. MD5 checksums are provided in `mmaudio/utils/download_utils.py`.
The models are also available at https://huggingface.co/hkchengrex/MMAudio/tree/main
| Model | Download link | File size |
| -------- | ------- | ------- |
| Flow prediction network, small 16kHz | <a href="https://huggingface.co/hkchengrex/MMAudio/resolve/main/weights/mmaudio_small_16k.pth" download="mmaudio_small_16k.pth">mmaudio_small_16k.pth</a> | 601M |
| Flow prediction network, small 44.1kHz | <a href="https://huggingface.co/hkchengrex/MMAudio/resolve/main/weights/mmaudio_small_44k.pth" download="mmaudio_small_44k.pth">mmaudio_small_44k.pth</a> | 601M |
| Flow prediction network, medium 44.1kHz | <a href="https://huggingface.co/hkchengrex/MMAudio/resolve/main/weights/mmaudio_medium_44k.pth" download="mmaudio_medium_44k.pth">mmaudio_medium_44k.pth</a> | 2.4G |
| Flow prediction network, large 44.1kHz | <a href="https://huggingface.co/hkchengrex/MMAudio/resolve/main/weights/mmaudio_large_44k.pth" download="mmaudio_large_44k.pth">mmaudio_large_44k.pth</a> | 3.9G |
| Flow prediction network, large 44.1kHz, v2 **(recommended)** | <a href="https://huggingface.co/hkchengrex/MMAudio/resolve/main/weights/mmaudio_large_44k_v2.pth" download="mmaudio_large_44k_v2.pth">mmaudio_large_44k_v2.pth</a> | 3.9G |
| 16kHz VAE | <a href="https://github.com/hkchengrex/MMAudio/releases/download/v0.1/v1-16.pth">v1-16.pth</a> | 655M |
| 16kHz BigVGAN vocoder (from Make-An-Audio 2) |<a href="https://github.com/hkchengrex/MMAudio/releases/download/v0.1/best_netG.pt">best_netG.pt</a> | 429M |
| 44.1kHz VAE |<a href="https://github.com/hkchengrex/MMAudio/releases/download/v0.1/v1-44.pth">v1-44.pth</a> | 1.2G |
| Synchformer visual encoder |<a href="https://github.com/hkchengrex/MMAudio/releases/download/v0.1/synchformer_state_dict.pth">synchformer_state_dict.pth</a> | 907M |
To run the model, you need four components: a flow prediction network, visual feature extractors (Synchformer and CLIP, CLIP will be downloaded automatically), a VAE, and a vocoder. VAEs and vocoders are specific to the sampling rate (16kHz or 44.1kHz) and not model sizes.
The 44.1kHz vocoder will be downloaded automatically.
The `_v2` model performs worse in benchmarking (e.g., in FrΓ©chet distance), but, in my experience, generalizes better to new data.
The expected directory structure (full):
```bash
MMAudio
βββ ext_weights
β βββ best_netG.pt
β βββ synchformer_state_dict.pth
β βββ v1-16.pth
β βββ v1-44.pth
βββ weights
β βββ mmaudio_small_16k.pth
β βββ mmaudio_small_44k.pth
β βββ mmaudio_medium_44k.pth
β βββ mmaudio_large_44k.pth
β βββ mmaudio_large_44k_v2.pth
βββ ...
```
The expected directory structure (minimal, for the recommended model only):
```bash
MMAudio
βββ ext_weights
β βββ synchformer_state_dict.pth
β βββ v1-44.pth
βββ weights
β βββ mmaudio_large_44k_v2.pth
βββ ...
```
|