Spaces:
Runtime error
Runtime error
| #!/usr/bin/env python | |
| import os | |
| import datetime | |
| import socket | |
| from threading import Thread | |
| import gradio as gr | |
| import pandas as pd | |
| import time | |
| from apscheduler.schedulers.background import BackgroundScheduler | |
| from huggingface_hub import snapshot_download | |
| from src.display.about import ( | |
| CITATION_BUTTON_LABEL, | |
| CITATION_BUTTON_TEXT, | |
| EVALUATION_QUEUE_TEXT, | |
| INTRODUCTION_TEXT, | |
| LLM_BENCHMARKS_TEXT, | |
| LLM_BENCHMARKS_DETAILS, | |
| FAQ_TEXT, | |
| TITLE, | |
| ) | |
| from src.display.css_html_js import custom_css | |
| from src.display.utils import ( | |
| BENCHMARK_COLS, | |
| COLS, | |
| EVAL_COLS, | |
| EVAL_TYPES, | |
| TYPES, | |
| AutoEvalColumn, | |
| ModelType, | |
| InferenceFramework, | |
| fields, | |
| WeightType, | |
| Precision, | |
| GPUType | |
| ) | |
| from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, H4_TOKEN, IS_PUBLIC, \ | |
| QUEUE_REPO, REPO_ID, RESULTS_REPO, DEBUG_QUEUE_REPO, DEBUG_RESULTS_REPO | |
| from src.populate import get_evaluation_queue_df, get_leaderboard_df | |
| from src.submission.submit import add_new_eval | |
| from src.utils import get_dataset_summary_table | |
| def get_args(): | |
| import argparse | |
| parser = argparse.ArgumentParser(description="Run the LLM Leaderboard") | |
| parser.add_argument("--debug", action="store_true", help="Run in debug mode") | |
| return parser.parse_args() | |
| args = get_args() | |
| if args.debug: | |
| print("Running in debug mode") | |
| QUEUE_REPO = DEBUG_QUEUE_REPO | |
| RESULTS_REPO = DEBUG_RESULTS_REPO | |
| def ui_snapshot_download(repo_id, local_dir, repo_type, tqdm_class, etag_timeout): | |
| try: | |
| print(local_dir) | |
| snapshot_download( | |
| repo_id=repo_id, local_dir=local_dir, repo_type=repo_type, tqdm_class=tqdm_class, etag_timeout=etag_timeout | |
| ) | |
| except Exception as e: | |
| restart_space() | |
| def restart_space(): | |
| API.restart_space(repo_id=REPO_ID, token=H4_TOKEN) | |
| def init_space(): | |
| dataset_df = get_dataset_summary_table(file_path="blog/Hallucination-Leaderboard-Summary.csv") | |
| if socket.gethostname() not in {"neuromancer"}: | |
| # sync model_type with open-llm-leaderboard | |
| ui_snapshot_download( | |
| repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30 | |
| ) | |
| ui_snapshot_download( | |
| repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30 | |
| ) | |
| raw_data, original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, "", COLS, BENCHMARK_COLS) | |
| finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = get_evaluation_queue_df( | |
| EVAL_REQUESTS_PATH, EVAL_COLS | |
| ) | |
| return dataset_df, original_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df | |
| # Searching and filtering | |
| def update_table( | |
| hidden_df: pd.DataFrame, columns: list, type_query: list, precision_query: list, size_query: list, query: str | |
| ): | |
| filtered_df = filter_models(hidden_df, type_query, size_query, precision_query) | |
| filtered_df = filter_queries(query, filtered_df) | |
| df = select_columns(filtered_df, columns) | |
| return df | |
| def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame: | |
| return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))] | |
| def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame: | |
| # always_here_cols = [AutoEvalColumn.model_type_symbol.name, AutoEvalColumn.model.name] | |
| always_here_cols = [c.name for c in fields(AutoEvalColumn) if c.never_hidden] | |
| dummy_col = [AutoEvalColumn.dummy.name] | |
| # We use COLS to maintain sorting | |
| filtered_df = df[ | |
| # always_here_cols + [c for c in COLS if c in df.columns and c in columns] + [AutoEvalColumn.dummy.name] | |
| always_here_cols | |
| + [c for c in COLS if c in df.columns and c in columns] | |
| + dummy_col | |
| ] | |
| return filtered_df | |
| def filter_queries(query: str, filtered_df: pd.DataFrame): | |
| final_df = [] | |
| if query != "": | |
| queries = [q.strip() for q in query.split(";")] | |
| for _q in queries: | |
| _q = _q.strip() | |
| if _q != "": | |
| temp_filtered_df = search_table(filtered_df, _q) | |
| if len(temp_filtered_df) > 0: | |
| final_df.append(temp_filtered_df) | |
| if len(final_df) > 0: | |
| filtered_df = pd.concat(final_df) | |
| subset = [AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name] | |
| filtered_df = filtered_df.drop_duplicates(subset=subset) | |
| return filtered_df | |
| def filter_models(df: pd.DataFrame, type_query: list, size_query: list, precision_query: list) -> pd.DataFrame: | |
| # Show all models | |
| filtered_df = df | |
| type_emoji = [t[0] for t in type_query] | |
| filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)] | |
| filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])] | |
| # numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query])) | |
| # params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce") | |
| # mask = params_column.apply(lambda x: any(numeric_interval.contains(x))) | |
| # filtered_df = filtered_df.loc[mask] | |
| return filtered_df | |
| shown_columns = None | |
| dataset_df, original_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = init_space() | |
| leaderboard_df = original_df.copy() | |
| # def update_leaderboard_table(): | |
| # global leaderboard_df, shown_columns | |
| # print("Updating leaderboard table") | |
| # return leaderboard_df[ | |
| # [c.name for c in fields(AutoEvalColumn) if c.never_hidden] | |
| # + shown_columns.value | |
| # + [AutoEvalColumn.dummy.name] | |
| # ] if not leaderboard_df.empty else leaderboard_df | |
| # def update_hidden_leaderboard_table(): | |
| # global original_df | |
| # return original_df[COLS] if original_df.empty is False else original_df | |
| # def update_dataset_table(): | |
| # global dataset_df | |
| # return dataset_df | |
| # def update_finish_table(): | |
| # global finished_eval_queue_df | |
| # return finished_eval_queue_df | |
| # def update_running_table(): | |
| # global running_eval_queue_df | |
| # return running_eval_queue_df | |
| # def update_pending_table(): | |
| # global pending_eval_queue_df | |
| # return pending_eval_queue_df | |
| # def update_finish_num(): | |
| # global finished_eval_queue_df | |
| # return len(finished_eval_queue_df) | |
| # def update_running_num(): | |
| # global running_eval_queue_df | |
| # return len(running_eval_queue_df) | |
| # def update_pending_num(): | |
| # global pending_eval_queue_df | |
| # return len(pending_eval_queue_df) | |
| # triggered only once at startup => read query parameter if it exists | |
| def load_query(request: gr.Request): | |
| query = request.query_params.get("query") or "" | |
| return query | |
| demo = gr.Blocks(css=custom_css) | |
| with demo: | |
| gr.HTML(TITLE) | |
| gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
| with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
| with gr.TabItem("open-moe-llm-leaderboard", elem_id="llm-benchmark-tab-table", id=0): | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Row(): | |
| search_bar = gr.Textbox( | |
| placeholder=" 🔍 Model search (separate multiple queries with `;`)", | |
| show_label=False, | |
| elem_id="search-bar" | |
| ) | |
| with gr.Row(): | |
| shown_columns = gr.CheckboxGroup( | |
| choices=[ | |
| c.name | |
| for c in fields(AutoEvalColumn) | |
| if not c.hidden and not c.never_hidden and not c.dummy | |
| ], | |
| value=[ | |
| c.name | |
| for c in fields(AutoEvalColumn) | |
| if c.displayed_by_default and not c.hidden and not c.never_hidden | |
| ], | |
| label="Select columns to show", | |
| elem_id="column-select", | |
| interactive=True, | |
| ) | |
| with gr.Column(min_width=320): | |
| filter_columns_size = gr.CheckboxGroup( | |
| label="Inference frameworks", | |
| choices=[t.to_str() for t in InferenceFramework], | |
| value=[t.to_str() for t in InferenceFramework], | |
| interactive=True, | |
| elem_id="filter-columns-size", | |
| ) | |
| filter_columns_type = gr.CheckboxGroup( | |
| label="Model types", | |
| choices=[t.to_str() for t in ModelType], | |
| value=[t.to_str() for t in ModelType], | |
| interactive=True, | |
| elem_id="filter-columns-type", | |
| ) | |
| filter_columns_precision = gr.CheckboxGroup( | |
| label="Precision", | |
| choices=[i.value.name for i in Precision], | |
| value=[i.value.name for i in Precision], | |
| interactive=True, | |
| elem_id="filter-columns-precision", | |
| ) | |
| # filter_columns_size = gr.CheckboxGroup( | |
| # label="Model sizes (in billions of parameters)", | |
| # choices=list(NUMERIC_INTERVALS.keys()), | |
| # value=list(NUMERIC_INTERVALS.keys()), | |
| # interactive=True, | |
| # elem_id="filter-columns-size", | |
| # ) | |
| # breakpoint() | |
| leaderboard_table = gr.components.Dataframe( | |
| value=( | |
| leaderboard_df[ | |
| [c.name for c in fields(AutoEvalColumn) if c.never_hidden] | |
| + shown_columns.value | |
| + [AutoEvalColumn.dummy.name] | |
| ] | |
| if leaderboard_df.empty is False | |
| else leaderboard_df | |
| ), | |
| headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value, | |
| datatype=TYPES, | |
| elem_id="leaderboard-table", | |
| interactive=False, | |
| visible=True, | |
| ) # column_widths=["2%", "20%"] | |
| # Dummy leaderboard for handling the case when the user uses backspace key | |
| hidden_leaderboard_table_for_search = gr.components.Dataframe( | |
| value=original_df[COLS] if original_df.empty is False else original_df, | |
| headers=COLS, | |
| datatype=TYPES, | |
| visible=False, | |
| ) | |
| search_bar.submit( | |
| update_table, | |
| [ | |
| hidden_leaderboard_table_for_search, | |
| shown_columns, | |
| filter_columns_type, | |
| filter_columns_precision, | |
| filter_columns_size, | |
| search_bar, | |
| ], | |
| leaderboard_table | |
| ) | |
| # Check query parameter once at startup and update search bar | |
| demo.load(load_query, inputs=[], outputs=[search_bar]) | |
| for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size]: | |
| selector.select( | |
| update_table, | |
| [ | |
| hidden_leaderboard_table_for_search, | |
| shown_columns, | |
| filter_columns_type, | |
| filter_columns_precision, | |
| filter_columns_size, | |
| search_bar, | |
| ], | |
| leaderboard_table, | |
| queue=True, | |
| ) | |
| with gr.TabItem("About", elem_id="llm-benchmark-tab-table", id=2): | |
| gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") | |
| dataset_table = gr.components.Dataframe( | |
| value=dataset_df, | |
| headers=list(dataset_df.columns), | |
| datatype=["str", "markdown", "str", "str", "str"], | |
| elem_id="dataset-table", | |
| interactive=False, | |
| visible=True, | |
| column_widths=["15%", "20%"], | |
| ) | |
| gr.Markdown(LLM_BENCHMARKS_DETAILS, elem_classes="markdown-text") | |
| gr.Markdown(FAQ_TEXT, elem_classes="markdown-text") | |
| with gr.TabItem("Submit a model ", elem_id="llm-benchmark-tab-table", id=3): | |
| with gr.Column(): | |
| with gr.Row(): | |
| gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") | |
| with gr.Column(): | |
| with gr.Accordion(f"✅ Finished Evaluations ({len(finished_eval_queue_df)})", open=False): | |
| with gr.Row(): | |
| finished_eval_table = gr.components.Dataframe( | |
| value=finished_eval_queue_df, headers=EVAL_COLS, datatype=EVAL_TYPES, row_count=5 | |
| ) | |
| with gr.Accordion(f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})", open=False): | |
| with gr.Row(): | |
| running_eval_table = gr.components.Dataframe( | |
| value=running_eval_queue_df, headers=EVAL_COLS, datatype=EVAL_TYPES, row_count=5 | |
| ) | |
| with gr.Accordion(f"⏳ Scheduled Evaluation Queue ({len(pending_eval_queue_df)})", open=False): | |
| with gr.Row(): | |
| pending_eval_table = gr.components.Dataframe( | |
| value=pending_eval_queue_df, headers=EVAL_COLS, datatype=EVAL_TYPES, row_count=5 | |
| ) | |
| with gr.Row(): | |
| gr.Markdown("# Submit your model here", elem_classes="markdown-text") | |
| with gr.Row(): | |
| inference_framework = gr.Dropdown( | |
| choices=[t.to_str() for t in InferenceFramework], | |
| label="Inference framework", | |
| multiselect=False, | |
| value=None, | |
| interactive=True, | |
| ) | |
| gpu_type = gr.Dropdown( | |
| choices=[t.to_str() for t in GPUType], | |
| label="GPU type", | |
| multiselect=False, | |
| value="NVIDIA-A100-PCIe-80GB", | |
| interactive=True, | |
| ) | |
| with gr.Row(): | |
| with gr.Column(): | |
| model_name_textbox = gr.Textbox(label="Model name") | |
| revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main") | |
| private = gr.Checkbox(False, label="Private", visible=not IS_PUBLIC) | |
| model_type = gr.Dropdown( | |
| choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown], | |
| label="Model type", | |
| multiselect=False, | |
| value=None, | |
| interactive=True, | |
| ) | |
| with gr.Column(): | |
| precision = gr.Dropdown( | |
| choices=[i.value.name for i in Precision if i != Precision.Unknown], | |
| label="Precision", | |
| multiselect=False, | |
| value="float32", | |
| interactive=True, | |
| ) | |
| weight_type = gr.Dropdown( | |
| choices=[i.value.name for i in WeightType], | |
| label="Weights type", | |
| multiselect=False, | |
| value="Original", | |
| interactive=True, | |
| ) | |
| base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)") | |
| submit_button = gr.Button("Submit Eval") | |
| submission_result = gr.Markdown() | |
| debug = gr.Checkbox(value=args.debug, label="Debug", visible=False) | |
| submit_button.click( | |
| add_new_eval, | |
| [ | |
| model_name_textbox, | |
| base_model_name_textbox, | |
| revision_name_textbox, | |
| precision, | |
| private, | |
| weight_type, | |
| model_type, | |
| inference_framework, | |
| debug, | |
| gpu_type | |
| ], | |
| submission_result, | |
| ) | |
| with gr.Row(): | |
| with gr.Accordion("Citing this leaderboard", open=False): | |
| citation_button = gr.Textbox( | |
| value=CITATION_BUTTON_TEXT, | |
| label=CITATION_BUTTON_LABEL, | |
| lines=20, | |
| elem_id="citation-button", | |
| show_copy_button=True, | |
| ) | |
| scheduler = BackgroundScheduler() | |
| scheduler.add_job(restart_space, "interval", hours=6) | |
| def launch_backend(): | |
| import subprocess | |
| from src.backend.envs import DEVICE | |
| if DEVICE not in {"cpu"}: | |
| _ = subprocess.run(["python", "backend-cli.py"]) | |
| # Thread(target=periodic_init, daemon=True).start() | |
| # scheduler.add_job(launch_backend, "interval", seconds=120) | |
| if __name__ == "__main__": | |
| scheduler.start() | |
| demo.queue(default_concurrency_limit=40).launch() | |