|
import json |
|
import os |
|
import pprint |
|
import re |
|
from datetime import datetime, timezone |
|
|
|
import click |
|
from colorama import Fore |
|
from huggingface_hub import HfApi, snapshot_download |
|
|
|
EVAL_REQUESTS_PATH = "eval-queue" |
|
QUEUE_REPO = "sparse-generative-ai/requests" |
|
|
|
precisions = ("float16", "bfloat16", "8bit (LLM.int8)", "4bit (QLoRA / FP4)", "GPTQ") |
|
model_types = ("pretrained", "fine-tuned", "RL-tuned", "instruction-tuned") |
|
weight_types = ("Original", "Delta", "Adapter") |
|
|
|
|
|
def get_model_size(model_info, precision: str): |
|
size_pattern = size_pattern = re.compile(r"(\d\.)?\d+(b|m)") |
|
try: |
|
model_size = round(model_info.safetensors["total"] / 1e9, 3) |
|
except (AttributeError, TypeError): |
|
try: |
|
size_match = re.search(size_pattern, model_info.modelId.lower()) |
|
model_size = size_match.group(0) |
|
model_size = round(float(model_size[:-1]) if model_size[-1] == "b" else float(model_size[:-1]) / 1e3, 3) |
|
except AttributeError: |
|
return 0 |
|
|
|
size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1 |
|
model_size = size_factor * model_size |
|
return model_size |
|
|
|
|
|
def main(): |
|
api = HfApi() |
|
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ") |
|
snapshot_download(repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH, repo_type="dataset") |
|
|
|
model_name = click.prompt("Enter model name") |
|
revision = click.prompt("Enter revision", default="main") |
|
precision = click.prompt("Enter precision", default="float32", type=click.Choice(precisions)) |
|
model_type = click.prompt("Enter model type", type=click.Choice(model_types)) |
|
weight_type = click.prompt("Enter weight type", default="Original", type=click.Choice(weight_types)) |
|
base_model = click.prompt("Enter base model", default="") |
|
status = click.prompt("Enter status", default="FINISHED") |
|
|
|
try: |
|
model_info = api.model_info(repo_id=model_name, revision=revision) |
|
except Exception as e: |
|
print(f"{Fore.RED}Could not find model info for {model_name} on the Hub\n{e}{Fore.RESET}") |
|
return 1 |
|
|
|
model_size = get_model_size(model_info=model_info, precision=precision) |
|
|
|
try: |
|
license = model_info.cardData["license"] |
|
except Exception: |
|
license = "?" |
|
|
|
eval_entry = { |
|
"model": model_name, |
|
"base_model": base_model, |
|
"revision": revision, |
|
"private": False, |
|
"precision": precision, |
|
"weight_type": weight_type, |
|
"status": status, |
|
"submitted_time": current_time, |
|
"model_type": model_type, |
|
"likes": model_info.likes, |
|
"params": model_size, |
|
"license": license, |
|
} |
|
|
|
user_name = "" |
|
model_path = model_name |
|
if "/" in model_name: |
|
user_name = model_name.split("/")[0] |
|
model_path = model_name.split("/")[1] |
|
|
|
pprint.pprint(eval_entry) |
|
|
|
if click.confirm("Do you want to continue? This request file will be pushed to the hub"): |
|
click.echo("continuing...") |
|
|
|
out_dir = f"{EVAL_REQUESTS_PATH}/{user_name}" |
|
os.makedirs(out_dir, exist_ok=True) |
|
out_path = f"{out_dir}/{model_path}_eval_request_{False}_{precision}_{weight_type}.json" |
|
|
|
with open(out_path, "w") as f: |
|
f.write(json.dumps(eval_entry)) |
|
|
|
api.upload_file( |
|
path_or_fileobj=out_path, |
|
path_in_repo=out_path.split(f"{EVAL_REQUESTS_PATH}/")[1], |
|
repo_id=QUEUE_REPO, |
|
repo_type="dataset", |
|
commit_message=f"Add {model_name} to eval queue", |
|
) |
|
else: |
|
click.echo("aborting...") |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|