Spaces:
Runtime error
Runtime error
Commit
·
2a18e0a
1
Parent(s):
a549d9d
Add app debug mode and dynamic refresh tables
Browse files- app.py +289 -229
- src/envs.py +2 -2
- src/submission/submit.py +5 -1
app.py
CHANGED
|
@@ -3,10 +3,11 @@
|
|
| 3 |
import os
|
| 4 |
import datetime
|
| 5 |
import socket
|
|
|
|
| 6 |
|
| 7 |
import gradio as gr
|
| 8 |
import pandas as pd
|
| 9 |
-
|
| 10 |
from apscheduler.schedulers.background import BackgroundScheduler
|
| 11 |
|
| 12 |
from huggingface_hub import snapshot_download
|
|
@@ -38,11 +39,24 @@ from src.display.utils import (
|
|
| 38 |
Precision,
|
| 39 |
)
|
| 40 |
|
| 41 |
-
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, H4_TOKEN, IS_PUBLIC,
|
|
|
|
| 42 |
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
| 43 |
from src.submission.submit import add_new_eval
|
| 44 |
from src.utils import get_dataset_summary_table
|
| 45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
|
| 47 |
def ui_snapshot_download(repo_id, local_dir, repo_type, tqdm_class, etag_timeout):
|
| 48 |
try:
|
|
@@ -76,11 +90,6 @@ def init_space():
|
|
| 76 |
)
|
| 77 |
return dataset_df, original_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df
|
| 78 |
|
| 79 |
-
|
| 80 |
-
dataset_df, original_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = init_space()
|
| 81 |
-
leaderboard_df = original_df.copy()
|
| 82 |
-
|
| 83 |
-
|
| 84 |
# Searching and filtering
|
| 85 |
def update_table(
|
| 86 |
hidden_df: pd.DataFrame, columns: list, type_query: list, precision_query: list, size_query: list, query: str
|
|
@@ -143,123 +152,158 @@ def filter_models(df: pd.DataFrame, type_query: list, size_query: list, precisio
|
|
| 143 |
|
| 144 |
return filtered_df
|
| 145 |
|
|
|
|
|
|
|
|
|
|
| 146 |
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
|
|
|
|
|
|
|
|
|
|
| 152 |
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
| 157 |
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
with gr.Column():
|
| 162 |
-
with gr.Row():
|
| 163 |
-
search_bar = gr.Textbox(
|
| 164 |
-
placeholder=" 🔍 Model search (separate multiple queries with `;`)",
|
| 165 |
-
show_label=False,
|
| 166 |
-
elem_id="search-bar",
|
| 167 |
-
)
|
| 168 |
-
with gr.Row():
|
| 169 |
-
shown_columns = gr.CheckboxGroup(
|
| 170 |
-
choices=[
|
| 171 |
-
c.name
|
| 172 |
-
for c in fields(AutoEvalColumn)
|
| 173 |
-
if not c.hidden and not c.never_hidden and not c.dummy
|
| 174 |
-
],
|
| 175 |
-
value=[
|
| 176 |
-
c.name
|
| 177 |
-
for c in fields(AutoEvalColumn)
|
| 178 |
-
if c.displayed_by_default and not c.hidden and not c.never_hidden
|
| 179 |
-
],
|
| 180 |
-
label="Select columns to show",
|
| 181 |
-
elem_id="column-select",
|
| 182 |
-
interactive=True,
|
| 183 |
-
)
|
| 184 |
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
choices=[t.to_str() for t in InferenceFramework],
|
| 189 |
-
value=[t.to_str() for t in InferenceFramework],
|
| 190 |
-
interactive=True,
|
| 191 |
-
elem_id="filter-columns-size",
|
| 192 |
-
)
|
| 193 |
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
value=[t.to_str() for t in ModelType],
|
| 198 |
-
interactive=True,
|
| 199 |
-
elem_id="filter-columns-type",
|
| 200 |
-
)
|
| 201 |
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 209 |
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 263 |
update_table,
|
| 264 |
[
|
| 265 |
hidden_leaderboard_table_for_search,
|
|
@@ -270,124 +314,139 @@ with demo:
|
|
| 270 |
search_bar,
|
| 271 |
],
|
| 272 |
leaderboard_table,
|
| 273 |
-
queue=True,
|
| 274 |
)
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
value=finished_eval_queue_df, headers=EVAL_COLS, datatype=EVAL_TYPES, row_count=5
|
| 302 |
-
)
|
| 303 |
-
|
| 304 |
-
with gr.Accordion(f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})", open=False):
|
| 305 |
-
with gr.Row():
|
| 306 |
-
running_eval_table = gr.components.Dataframe(
|
| 307 |
-
value=running_eval_queue_df, headers=EVAL_COLS, datatype=EVAL_TYPES, row_count=5
|
| 308 |
-
)
|
| 309 |
-
|
| 310 |
-
with gr.Accordion(f"⏳ Scheduled Evaluation Queue ({len(pending_eval_queue_df)})", open=False):
|
| 311 |
-
with gr.Row():
|
| 312 |
-
pending_eval_table = gr.components.Dataframe(
|
| 313 |
-
value=pending_eval_queue_df, headers=EVAL_COLS, datatype=EVAL_TYPES, row_count=5
|
| 314 |
-
)
|
| 315 |
-
|
| 316 |
-
with gr.Row():
|
| 317 |
-
gr.Markdown("# Submit your model here", elem_classes="markdown-text")
|
| 318 |
-
|
| 319 |
-
with gr.Row():
|
| 320 |
-
inference_framework = gr.Dropdown(
|
| 321 |
-
choices=[t.to_str() for t in InferenceFramework],
|
| 322 |
-
label="Inference framework",
|
| 323 |
-
multiselect=False,
|
| 324 |
-
value=None,
|
| 325 |
-
interactive=True,
|
| 326 |
)
|
| 327 |
-
|
| 328 |
-
|
|
|
|
|
|
|
| 329 |
with gr.Column():
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 336 |
multiselect=False,
|
| 337 |
value=None,
|
| 338 |
interactive=True,
|
| 339 |
)
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
label="
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
|
| 385 |
-
|
| 386 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 387 |
scheduler = BackgroundScheduler()
|
| 388 |
|
| 389 |
-
scheduler.add_job(restart_space, "interval",
|
| 390 |
-
|
| 391 |
|
| 392 |
def launch_backend():
|
| 393 |
import subprocess
|
|
@@ -396,8 +455,9 @@ def launch_backend():
|
|
| 396 |
if DEVICE not in {"cpu"}:
|
| 397 |
_ = subprocess.run(["python", "backend-cli.py"])
|
| 398 |
|
| 399 |
-
|
| 400 |
# scheduler.add_job(launch_backend, "interval", seconds=120)
|
| 401 |
-
|
| 402 |
-
scheduler.start()
|
| 403 |
-
|
|
|
|
|
|
| 3 |
import os
|
| 4 |
import datetime
|
| 5 |
import socket
|
| 6 |
+
from threading import Thread
|
| 7 |
|
| 8 |
import gradio as gr
|
| 9 |
import pandas as pd
|
| 10 |
+
import time
|
| 11 |
from apscheduler.schedulers.background import BackgroundScheduler
|
| 12 |
|
| 13 |
from huggingface_hub import snapshot_download
|
|
|
|
| 39 |
Precision,
|
| 40 |
)
|
| 41 |
|
| 42 |
+
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, H4_TOKEN, IS_PUBLIC, \
|
| 43 |
+
QUEUE_REPO, REPO_ID, RESULTS_REPO, DEBUG_QUEUE_REPO, DEBUG_RESULTS_REPO
|
| 44 |
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
| 45 |
from src.submission.submit import add_new_eval
|
| 46 |
from src.utils import get_dataset_summary_table
|
| 47 |
|
| 48 |
+
def get_args():
|
| 49 |
+
import argparse
|
| 50 |
+
|
| 51 |
+
parser = argparse.ArgumentParser(description="Run the LLM Leaderboard")
|
| 52 |
+
parser.add_argument("--debug", action="store_true", help="Run in debug mode")
|
| 53 |
+
return parser.parse_args()
|
| 54 |
+
|
| 55 |
+
args = get_args()
|
| 56 |
+
if args.debug:
|
| 57 |
+
print("Running in debug mode")
|
| 58 |
+
QUEUE_REPO = DEBUG_QUEUE_REPO
|
| 59 |
+
RESULTS_REPO = DEBUG_RESULTS_REPO
|
| 60 |
|
| 61 |
def ui_snapshot_download(repo_id, local_dir, repo_type, tqdm_class, etag_timeout):
|
| 62 |
try:
|
|
|
|
| 90 |
)
|
| 91 |
return dataset_df, original_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df
|
| 92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
# Searching and filtering
|
| 94 |
def update_table(
|
| 95 |
hidden_df: pd.DataFrame, columns: list, type_query: list, precision_query: list, size_query: list, query: str
|
|
|
|
| 152 |
|
| 153 |
return filtered_df
|
| 154 |
|
| 155 |
+
shown_columns = None
|
| 156 |
+
dataset_df, original_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = init_space()
|
| 157 |
+
leaderboard_df = original_df.copy()
|
| 158 |
|
| 159 |
+
def update_leaderboard_table():
|
| 160 |
+
global leaderboard_df, shown_columns
|
| 161 |
+
print("Updating leaderboard table")
|
| 162 |
+
return leaderboard_df[
|
| 163 |
+
[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
| 164 |
+
+ shown_columns.value
|
| 165 |
+
+ [AutoEvalColumn.dummy.name]
|
| 166 |
+
] if not leaderboard_df.empty else leaderboard_df
|
| 167 |
+
|
| 168 |
|
| 169 |
+
def update_hidden_leaderboard_table():
|
| 170 |
+
global original_df
|
| 171 |
+
return original_df[COLS] if original_df.empty is False else original_df
|
| 172 |
|
| 173 |
+
def update_dataset_table():
|
| 174 |
+
global dataset_df
|
| 175 |
+
return dataset_df
|
|
|
|
| 176 |
|
| 177 |
+
def update_finish_table():
|
| 178 |
+
global finished_eval_queue_df
|
| 179 |
+
return finished_eval_queue_df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
|
| 181 |
+
def update_running_table():
|
| 182 |
+
global running_eval_queue_df
|
| 183 |
+
return running_eval_queue_df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 184 |
|
| 185 |
+
def update_pending_table():
|
| 186 |
+
global pending_eval_queue_df
|
| 187 |
+
return pending_eval_queue_df
|
|
|
|
|
|
|
|
|
|
|
|
|
| 188 |
|
| 189 |
+
def update_finish_num():
|
| 190 |
+
global finished_eval_queue_df
|
| 191 |
+
return len(finished_eval_queue_df)
|
| 192 |
+
|
| 193 |
+
def update_running_num():
|
| 194 |
+
global running_eval_queue_df
|
| 195 |
+
return len(running_eval_queue_df)
|
| 196 |
+
|
| 197 |
+
def update_pending_num():
|
| 198 |
+
global pending_eval_queue_df
|
| 199 |
+
return len(pending_eval_queue_df)
|
| 200 |
|
| 201 |
+
# triggered only once at startup => read query parameter if it exists
|
| 202 |
+
def load_query(request: gr.Request):
|
| 203 |
+
query = request.query_params.get("query") or ""
|
| 204 |
+
return query
|
| 205 |
+
|
| 206 |
+
def refresh_leaderboard():
|
| 207 |
+
return gr.update(value=update_leaderboard_table()), gr.update(value=update_hidden_leaderboard_table()), \
|
| 208 |
+
gr.update(value=update_dataset_table()), gr.update(value=update_finish_table()), \
|
| 209 |
+
gr.update(value=update_running_table()), gr.update(value=update_pending_table()), \
|
| 210 |
+
gr.update(value=update_finish_num()), gr.update(value=update_running_num()), gr.update(value=update_pending_num())
|
| 211 |
+
|
| 212 |
+
def periodic_init():
|
| 213 |
+
global dataset_df, original_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df, leaderboard_df
|
| 214 |
+
while True:
|
| 215 |
+
time.sleep(60)
|
| 216 |
+
dataset_df, original_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = init_space()
|
| 217 |
+
leaderboard_df = original_df.copy()
|
| 218 |
+
|
| 219 |
+
def block_launch():
|
| 220 |
+
global dataset_df, original_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df, leaderboard_df, shown_columns
|
| 221 |
+
demo = gr.Blocks(css=custom_css)
|
| 222 |
+
with demo:
|
| 223 |
+
gr.HTML(TITLE)
|
| 224 |
+
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
| 225 |
+
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 226 |
+
with gr.TabItem("MOE-LLM-GPU-Poor-Leaderboard Benchmark", elem_id="llm-benchmark-tab-table", id=0):
|
| 227 |
+
with gr.Row():
|
| 228 |
+
with gr.Column():
|
| 229 |
+
with gr.Row():
|
| 230 |
+
search_bar = gr.Textbox(
|
| 231 |
+
placeholder=" 🔍 Model search (separate multiple queries with `;`)",
|
| 232 |
+
show_label=False,
|
| 233 |
+
elem_id="search-bar",
|
| 234 |
+
)
|
| 235 |
+
with gr.Row():
|
| 236 |
+
shown_columns = gr.CheckboxGroup(
|
| 237 |
+
choices=[
|
| 238 |
+
c.name
|
| 239 |
+
for c in fields(AutoEvalColumn)
|
| 240 |
+
if not c.hidden and not c.never_hidden and not c.dummy
|
| 241 |
+
],
|
| 242 |
+
value=[
|
| 243 |
+
c.name
|
| 244 |
+
for c in fields(AutoEvalColumn)
|
| 245 |
+
if c.displayed_by_default and not c.hidden and not c.never_hidden
|
| 246 |
+
],
|
| 247 |
+
label="Select columns to show",
|
| 248 |
+
elem_id="column-select",
|
| 249 |
+
interactive=True,
|
| 250 |
+
)
|
| 251 |
+
with gr.Column(min_width=320):
|
| 252 |
+
filter_columns_size = gr.CheckboxGroup(
|
| 253 |
+
label="Inference frameworks",
|
| 254 |
+
choices=[t.to_str() for t in InferenceFramework],
|
| 255 |
+
value=[t.to_str() for t in InferenceFramework],
|
| 256 |
+
interactive=True,
|
| 257 |
+
elem_id="filter-columns-size",
|
| 258 |
+
)
|
| 259 |
+
filter_columns_type = gr.CheckboxGroup(
|
| 260 |
+
label="Model types",
|
| 261 |
+
choices=[t.to_str() for t in ModelType],
|
| 262 |
+
value=[t.to_str() for t in ModelType],
|
| 263 |
+
interactive=True,
|
| 264 |
+
elem_id="filter-columns-type",
|
| 265 |
+
)
|
| 266 |
+
filter_columns_precision = gr.CheckboxGroup(
|
| 267 |
+
label="Precision",
|
| 268 |
+
choices=[i.value.name for i in Precision],
|
| 269 |
+
value=[i.value.name for i in Precision],
|
| 270 |
+
interactive=True,
|
| 271 |
+
elem_id="filter-columns-precision",
|
| 272 |
+
)
|
| 273 |
+
# filter_columns_size = gr.CheckboxGroup(
|
| 274 |
+
# label="Model sizes (in billions of parameters)",
|
| 275 |
+
# choices=list(NUMERIC_INTERVALS.keys()),
|
| 276 |
+
# value=list(NUMERIC_INTERVALS.keys()),
|
| 277 |
+
# interactive=True,
|
| 278 |
+
# elem_id="filter-columns-size",
|
| 279 |
+
# )
|
| 280 |
+
# breakpoint()
|
| 281 |
+
refresh_button = gr.Button("Refresh", visible=True)
|
| 282 |
+
leaderboard_table = gr.components.Dataframe(
|
| 283 |
+
value=(
|
| 284 |
+
leaderboard_df[
|
| 285 |
+
[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
| 286 |
+
+ shown_columns.value
|
| 287 |
+
+ [AutoEvalColumn.dummy.name]
|
| 288 |
+
]
|
| 289 |
+
if leaderboard_df.empty is False
|
| 290 |
+
else leaderboard_df
|
| 291 |
+
),
|
| 292 |
+
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
| 293 |
+
datatype=TYPES,
|
| 294 |
+
elem_id="leaderboard-table",
|
| 295 |
+
interactive=False,
|
| 296 |
+
visible=True,
|
| 297 |
+
) # column_widths=["2%", "20%"]
|
| 298 |
+
# Dummy leaderboard for handling the case when the user uses backspace key
|
| 299 |
+
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
| 300 |
+
value=original_df[COLS] if original_df.empty is False else original_df,
|
| 301 |
+
headers=COLS,
|
| 302 |
+
datatype=TYPES,
|
| 303 |
+
visible=False,
|
| 304 |
+
)
|
| 305 |
+
# refresh_button.click(fn=update_leaderboard_tables, outputs=[leaderboard_table, hidden_leaderboard_table_for_search])
|
| 306 |
+
search_bar.submit(
|
| 307 |
update_table,
|
| 308 |
[
|
| 309 |
hidden_leaderboard_table_for_search,
|
|
|
|
| 314 |
search_bar,
|
| 315 |
],
|
| 316 |
leaderboard_table,
|
|
|
|
| 317 |
)
|
| 318 |
+
# Check query parameter once at startup and update search bar
|
| 319 |
+
demo.load(load_query, inputs=[], outputs=[search_bar])
|
| 320 |
+
for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size]:
|
| 321 |
+
selector.change(
|
| 322 |
+
update_table,
|
| 323 |
+
[
|
| 324 |
+
hidden_leaderboard_table_for_search,
|
| 325 |
+
shown_columns,
|
| 326 |
+
filter_columns_type,
|
| 327 |
+
filter_columns_precision,
|
| 328 |
+
filter_columns_size,
|
| 329 |
+
search_bar,
|
| 330 |
+
],
|
| 331 |
+
leaderboard_table,
|
| 332 |
+
queue=True,
|
| 333 |
+
)
|
| 334 |
+
with gr.TabItem("About", elem_id="llm-benchmark-tab-table", id=2):
|
| 335 |
+
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
| 336 |
+
dataset_table = gr.components.Dataframe(
|
| 337 |
+
value=dataset_df,
|
| 338 |
+
headers=list(dataset_df.columns),
|
| 339 |
+
datatype=["str", "markdown", "str", "str", "str"],
|
| 340 |
+
elem_id="dataset-table",
|
| 341 |
+
interactive=False,
|
| 342 |
+
visible=True,
|
| 343 |
+
column_widths=["15%", "20%"],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 344 |
)
|
| 345 |
+
gr.Markdown(LLM_BENCHMARKS_DETAILS, elem_classes="markdown-text")
|
| 346 |
+
gr.Markdown(FAQ_TEXT, elem_classes="markdown-text")
|
| 347 |
+
# refresh_button.click(fn=update_dataset_table, outputs=[dataset_table])
|
| 348 |
+
with gr.TabItem("Submit a model ", elem_id="llm-benchmark-tab-table", id=3):
|
| 349 |
with gr.Column():
|
| 350 |
+
with gr.Row():
|
| 351 |
+
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
| 352 |
+
with gr.Column():
|
| 353 |
+
with gr.Accordion(f"✅ Finished Evaluations", open=False):
|
| 354 |
+
with gr.Column():
|
| 355 |
+
num_fin = gr.Number(len(finished_eval_queue_df), label="Number of finished evaluations", visible=True, interactive=False)
|
| 356 |
+
with gr.Row():
|
| 357 |
+
finished_eval_table = gr.components.Dataframe(
|
| 358 |
+
value=finished_eval_queue_df, headers=EVAL_COLS, datatype=EVAL_TYPES, row_count=5
|
| 359 |
+
)
|
| 360 |
+
with gr.Accordion(f"🔄 Running Evaluation Queue", open=False):
|
| 361 |
+
with gr.Column():
|
| 362 |
+
num_run = gr.Number(len(running_eval_queue_df), label="Number of running evaluations", visible=True, interactive=False)
|
| 363 |
+
with gr.Row():
|
| 364 |
+
running_eval_table = gr.components.Dataframe(
|
| 365 |
+
value=running_eval_queue_df, headers=EVAL_COLS, datatype=EVAL_TYPES, row_count=5
|
| 366 |
+
)
|
| 367 |
+
with gr.Accordion(f"⏳ Scheduled Evaluation Queue", open=False):
|
| 368 |
+
with gr.Column():
|
| 369 |
+
num_sche = gr.Number(len(pending_eval_queue_df), label="Number of scheduled evaluations", visible=True, interactive=False)
|
| 370 |
+
with gr.Row():
|
| 371 |
+
pending_eval_table = gr.components.Dataframe(
|
| 372 |
+
value=pending_eval_queue_df, headers=EVAL_COLS, datatype=EVAL_TYPES, row_count=5
|
| 373 |
+
)
|
| 374 |
+
# refresh_button.click(fn=update_submit_tables,
|
| 375 |
+
# outputs=[finished_eval_table, running_eval_table, pending_eval_table])
|
| 376 |
+
with gr.Row():
|
| 377 |
+
gr.Markdown("# Submit your model here", elem_classes="markdown-text")
|
| 378 |
+
with gr.Row():
|
| 379 |
+
inference_framework = gr.Dropdown(
|
| 380 |
+
choices=[t.to_str() for t in InferenceFramework],
|
| 381 |
+
label="Inference framework",
|
| 382 |
multiselect=False,
|
| 383 |
value=None,
|
| 384 |
interactive=True,
|
| 385 |
)
|
| 386 |
+
with gr.Row():
|
| 387 |
+
with gr.Column():
|
| 388 |
+
model_name_textbox = gr.Textbox(label="Model name")
|
| 389 |
+
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
|
| 390 |
+
private = gr.Checkbox(False, label="Private", visible=not IS_PUBLIC)
|
| 391 |
+
model_type = gr.Dropdown(
|
| 392 |
+
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
|
| 393 |
+
label="Model type",
|
| 394 |
+
multiselect=False,
|
| 395 |
+
value=None,
|
| 396 |
+
interactive=True,
|
| 397 |
+
)
|
| 398 |
+
with gr.Column():
|
| 399 |
+
precision = gr.Dropdown(
|
| 400 |
+
choices=[i.value.name for i in Precision if i != Precision.Unknown],
|
| 401 |
+
label="Precision",
|
| 402 |
+
multiselect=False,
|
| 403 |
+
value="float32",
|
| 404 |
+
interactive=True,
|
| 405 |
+
)
|
| 406 |
+
weight_type = gr.Dropdown(
|
| 407 |
+
choices=[i.value.name for i in WeightType],
|
| 408 |
+
label="Weights type",
|
| 409 |
+
multiselect=False,
|
| 410 |
+
value="Original",
|
| 411 |
+
interactive=True,
|
| 412 |
+
)
|
| 413 |
+
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
|
| 414 |
+
submit_button = gr.Button("Submit Eval")
|
| 415 |
+
submission_result = gr.Markdown()
|
| 416 |
+
debug = gr.Checkbox(args.debug, label="Debug", visible=False)
|
| 417 |
+
submit_button.click(
|
| 418 |
+
add_new_eval,
|
| 419 |
+
[
|
| 420 |
+
model_name_textbox,
|
| 421 |
+
base_model_name_textbox,
|
| 422 |
+
revision_name_textbox,
|
| 423 |
+
precision,
|
| 424 |
+
private,
|
| 425 |
+
weight_type,
|
| 426 |
+
model_type,
|
| 427 |
+
inference_framework,
|
| 428 |
+
debug
|
| 429 |
+
],
|
| 430 |
+
submission_result,
|
| 431 |
+
)
|
| 432 |
+
refresh_button.click(refresh_leaderboard,
|
| 433 |
+
outputs=[leaderboard_table, hidden_leaderboard_table_for_search, dataset_table,
|
| 434 |
+
finished_eval_table, running_eval_table, pending_eval_table, num_fin, num_run, num_sche])
|
| 435 |
+
|
| 436 |
+
with gr.Row():
|
| 437 |
+
with gr.Accordion("Citing this leaderboard", open=False):
|
| 438 |
+
citation_button = gr.Textbox(
|
| 439 |
+
value=CITATION_BUTTON_TEXT,
|
| 440 |
+
label=CITATION_BUTTON_LABEL,
|
| 441 |
+
lines=20,
|
| 442 |
+
elem_id="citation-button",
|
| 443 |
+
show_copy_button=True,
|
| 444 |
+
)
|
| 445 |
+
demo.queue(default_concurrency_limit=40).launch()
|
| 446 |
+
|
| 447 |
scheduler = BackgroundScheduler()
|
| 448 |
|
| 449 |
+
scheduler.add_job(restart_space, "interval", hours=6)
|
|
|
|
| 450 |
|
| 451 |
def launch_backend():
|
| 452 |
import subprocess
|
|
|
|
| 455 |
if DEVICE not in {"cpu"}:
|
| 456 |
_ = subprocess.run(["python", "backend-cli.py"])
|
| 457 |
|
| 458 |
+
Thread(target=periodic_init, daemon=True).start()
|
| 459 |
# scheduler.add_job(launch_backend, "interval", seconds=120)
|
| 460 |
+
if __name__ == "__main__":
|
| 461 |
+
scheduler.start()
|
| 462 |
+
block_launch()
|
| 463 |
+
|
src/envs.py
CHANGED
|
@@ -12,8 +12,8 @@ QUEUE_REPO = "sparse-generative-ai/requests"
|
|
| 12 |
QUEUE_REPO_OPEN_LLM = "open-llm-leaderboard/requests"
|
| 13 |
RESULTS_REPO = "sparse-generative-ai/results"
|
| 14 |
|
| 15 |
-
|
| 16 |
-
|
| 17 |
|
| 18 |
IS_PUBLIC = bool(os.environ.get("IS_PUBLIC", True))
|
| 19 |
|
|
|
|
| 12 |
QUEUE_REPO_OPEN_LLM = "open-llm-leaderboard/requests"
|
| 13 |
RESULTS_REPO = "sparse-generative-ai/results"
|
| 14 |
|
| 15 |
+
DEBUG_QUEUE_REPO = "sparse-generative-ai/debug_requests"
|
| 16 |
+
DEBUG_RESULTS_REPO = "sparse-generative-ai/debug_results"
|
| 17 |
|
| 18 |
IS_PUBLIC = bool(os.environ.get("IS_PUBLIC", True))
|
| 19 |
|
src/submission/submit.py
CHANGED
|
@@ -3,7 +3,7 @@ import os
|
|
| 3 |
from datetime import datetime, timezone
|
| 4 |
|
| 5 |
from src.display.formatting import styled_error, styled_message, styled_warning
|
| 6 |
-
from src.envs import API, EVAL_REQUESTS_PATH, H4_TOKEN, QUEUE_REPO, RATE_LIMIT_PERIOD, RATE_LIMIT_QUOTA
|
| 7 |
from src.leaderboard.filter_models import DO_NOT_SUBMIT_MODELS
|
| 8 |
from src.submission.check_validity import (
|
| 9 |
already_submitted_models,
|
|
@@ -26,12 +26,16 @@ def add_new_eval(
|
|
| 26 |
weight_type: str,
|
| 27 |
model_type: str,
|
| 28 |
inference_framework: str,
|
|
|
|
| 29 |
):
|
| 30 |
global REQUESTED_MODELS
|
| 31 |
global USERS_TO_SUBMISSION_DATES
|
| 32 |
if not REQUESTED_MODELS:
|
| 33 |
REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
|
| 34 |
|
|
|
|
|
|
|
|
|
|
| 35 |
user_name = ""
|
| 36 |
model_path = model
|
| 37 |
if "/" in model:
|
|
|
|
| 3 |
from datetime import datetime, timezone
|
| 4 |
|
| 5 |
from src.display.formatting import styled_error, styled_message, styled_warning
|
| 6 |
+
from src.envs import API, EVAL_REQUESTS_PATH, H4_TOKEN, QUEUE_REPO, RATE_LIMIT_PERIOD, RATE_LIMIT_QUOTA, DEBUG_QUEUE_REPO
|
| 7 |
from src.leaderboard.filter_models import DO_NOT_SUBMIT_MODELS
|
| 8 |
from src.submission.check_validity import (
|
| 9 |
already_submitted_models,
|
|
|
|
| 26 |
weight_type: str,
|
| 27 |
model_type: str,
|
| 28 |
inference_framework: str,
|
| 29 |
+
debug: bool = False
|
| 30 |
):
|
| 31 |
global REQUESTED_MODELS
|
| 32 |
global USERS_TO_SUBMISSION_DATES
|
| 33 |
if not REQUESTED_MODELS:
|
| 34 |
REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
|
| 35 |
|
| 36 |
+
if debug:
|
| 37 |
+
QUEUE_REPO = DEBUG_QUEUE_REPO
|
| 38 |
+
|
| 39 |
user_name = ""
|
| 40 |
model_path = model
|
| 41 |
if "/" in model:
|