Spaces:
Build error
Build error
| #ran on Kaggle | |
| !pip install sentence-transformers | |
| !pip install torch | |
| import torch | |
| from sentence_transformers import SentenceTransformer | |
| import numpy as np | |
| import pandas as pd | |
| from tqdm import tqdm # For tracking progress in batches | |
| # Check if GPU is available | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| print(f"Using device: {device}") | |
| # Load dataset | |
| dataset = pd.read_csv('/kaggle/input/d/infamouscoder/dataset-netflix-shows/netflix_titles.csv') | |
| # Load model to GPU if available | |
| model = SentenceTransformer("all-MiniLM-L6-v2").to(device) | |
| # Combine fields for embeddings | |
| def combine_description_title_and_genre(description, listed_in, title): | |
| return f"{description} Genre: {listed_in} Title: {title}" | |
| # Create combined text column | |
| dataset['combined_text'] = dataset.apply(lambda row: combine_description_title_and_genre(row['description'], row['listed_in'], row['title']), axis=1) | |
| # Generate embeddings in batches to save memory | |
| batch_size = 32 | |
| embeddings = [] | |
| for i in tqdm(range(0, len(dataset), batch_size), desc="Generating Embeddings"): | |
| batch_texts = dataset['combined_text'][i:i+batch_size].tolist() | |
| batch_embeddings = model.encode(batch_texts, convert_to_tensor=True, device=device) | |
| embeddings.extend(batch_embeddings.cpu().numpy()) # Move to CPU to save memory | |
| # Convert list to numpy array | |
| embeddings = np.array(embeddings) | |
| # Save embeddings and metadata | |
| np.save("/kaggle/working/netflix_embeddings.npy", embeddings) | |
| dataset[['show_id', 'title', 'description', 'listed_in']].to_csv("/kaggle/working/netflix_metadata.csv", index=False) |