YOLOv8m_defence / app.py
spencercdz's picture
Update app.py
4f89493 verified
raw
history blame
2.77 kB
import gradio as gr
import PIL.Image as Image
from ultralytics import YOLO
model = None
def predict_image(img, conf_threshold, iou_threshold, model_name):
"""Predicts objects in an image using YOLOv8m Defence model with adjustable confidence and IOU thresholds."""
global model
model = YOLO(model_name)
results = model.predict(
source=img,
conf=conf_threshold,
iou=iou_threshold,
show_labels=True,
show_conf=True,
imgsz=640,
)
for r in results:
im_array = r.plot()
im = Image.fromarray(im_array[..., ::-1])
return im
# Custom CSS for font styling
css = """
body, .gradio-container {
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif !important;
}
.gr-button {
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif !important;
font-weight: 500 !important;
}
.gr-box h1 {
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif !important;
font-weight: 600 !important;
}
.gr-box p {
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif !important;
}
"""
iface = gr.Interface(
fn=predict_image,
inputs=[
gr.Image(type="pil", label="Upload Image"),
gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence threshold"),
gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU threshold"),
gr.Radio(choices=["yolov8m_defence.pt"], label="Model Name", value="yolov8m_defence.pt"),
],
outputs=gr.Image(type="pil", label="Detection Results"),
title="YOLOv8m Defence Object Detection",
description="""
Upload images to detect military and civilian vehicles, aircraft, and ships using our fine-tuned YOLOv8m model.
**Detectable Objects (18 categories):** Aircraft (cargo, commercial, fighter, helicopter, etc.),
Vehicles (car, truck, tank, bus, van), Ships (cargo, yacht, cruise, warship, sailboat),
and specialized items (drone, missile).
Developed for DSTA Brainhack 2025 - TIL-AI Category (Semi-Finalist)
""",
examples=[
["examples/test1.jpg", 0.25, 0.45, "yolov8m_defence.pt"],
["examples/test2.jpg", 0.25, 0.45, "yolov8m_defence.pt"],
["examples/test3.jpg", 0.25, 0.45, "yolov8m_defence.pt"],
["examples/test4.jpg", 0.25, 0.45, "yolov8m_defence.pt"],
["examples/test5.jpg", 0.25, 0.45, "yolov8m_defence.pt"],
["examples/test6.jpg", 0.25, 0.45, "yolov8m_defence.pt"],
["examples/test7.jpg", 0.25, 0.45, "yolov8m_defence.pt"],
["examples/test8.jpg", 0.25, 0.45, "yolov8m_defence.pt"],
["examples/test9.jpg", 0.25, 0.45, "yolov8m_defence.pt"],
["examples/test10.jpg", 0.25, 0.45, "yolov8m_defence.pt"],
],
css=css
)
iface.launch(share=True)