Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,25 +1,46 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import PIL.Image as Image
|
| 3 |
from ultralytics import YOLO
|
|
|
|
|
|
|
| 4 |
|
| 5 |
-
model
|
|
|
|
|
|
|
| 6 |
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
"""Predicts objects in an image using YOLOv8m Defence model with adjustable confidence and IOU thresholds."""
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
# Custom CSS for font styling
|
| 25 |
css = """
|
|
@@ -39,13 +60,13 @@ body, .gradio-container {
|
|
| 39 |
}
|
| 40 |
"""
|
| 41 |
|
|
|
|
| 42 |
iface = gr.Interface(
|
| 43 |
fn=predict_image,
|
| 44 |
inputs=[
|
| 45 |
gr.Image(type="pil", label="Upload Image"),
|
| 46 |
gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence threshold"),
|
| 47 |
gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU threshold"),
|
| 48 |
-
gr.Radio(choices=["yolov8m_defence.pt"], label="Model Name", value="yolov8m_defence.pt"),
|
| 49 |
],
|
| 50 |
outputs=gr.Image(type="pil", label="Detection Results"),
|
| 51 |
title="YOLOv8m Defence Object Detection",
|
|
@@ -56,21 +77,25 @@ iface = gr.Interface(
|
|
| 56 |
Vehicles (car, truck, tank, bus, van), Ships (cargo, yacht, cruise, warship, sailboat),
|
| 57 |
and specialized items (drone, missile).
|
| 58 |
|
|
|
|
|
|
|
| 59 |
Developed for DSTA Brainhack 2025 - TIL-AI Category (Semi-Finalist)
|
| 60 |
""",
|
| 61 |
examples=[
|
| 62 |
-
["examples/test1.jpg", 0.25, 0.45
|
| 63 |
-
["examples/test2.jpg", 0.25, 0.45
|
| 64 |
-
["examples/test3.jpg", 0.25, 0.45
|
| 65 |
-
["examples/test4.jpg", 0.25, 0.45
|
| 66 |
-
["examples/test5.jpg", 0.25, 0.45
|
| 67 |
-
["examples/test6.jpg", 0.25, 0.45
|
| 68 |
-
["examples/test7.jpg", 0.25, 0.45
|
| 69 |
-
["examples/test8.jpg", 0.25, 0.45
|
| 70 |
-
["examples/test9.jpg", 0.25, 0.45
|
| 71 |
-
["examples/test10.jpg", 0.25, 0.45
|
| 72 |
],
|
| 73 |
-
css=css
|
|
|
|
| 74 |
)
|
| 75 |
|
| 76 |
-
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import PIL.Image as Image
|
| 3 |
from ultralytics import YOLO
|
| 4 |
+
import torch
|
| 5 |
+
import os
|
| 6 |
|
| 7 |
+
# Load model once at startup
|
| 8 |
+
print("Loading YOLOv8m Defence model...")
|
| 9 |
+
model = YOLO("yolov8m_defence.pt")
|
| 10 |
|
| 11 |
+
# Set device and optimize for CPU inference
|
| 12 |
+
if torch.cuda.is_available():
|
| 13 |
+
device = 'cuda'
|
| 14 |
+
print("Using GPU acceleration")
|
| 15 |
+
else:
|
| 16 |
+
device = 'cpu'
|
| 17 |
+
print("Using CPU inference")
|
| 18 |
+
|
| 19 |
+
model.to(device)
|
| 20 |
+
|
| 21 |
+
def predict_image(img, conf_threshold, iou_threshold):
|
| 22 |
"""Predicts objects in an image using YOLOv8m Defence model with adjustable confidence and IOU thresholds."""
|
| 23 |
+
try:
|
| 24 |
+
results = model.predict(
|
| 25 |
+
source=img,
|
| 26 |
+
conf=conf_threshold,
|
| 27 |
+
iou=iou_threshold,
|
| 28 |
+
show_labels=True,
|
| 29 |
+
show_conf=True,
|
| 30 |
+
imgsz=640,
|
| 31 |
+
verbose=False,
|
| 32 |
+
device=device
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
for r in results:
|
| 36 |
+
im_array = r.plot()
|
| 37 |
+
im = Image.fromarray(im_array[..., ::-1])
|
| 38 |
+
|
| 39 |
+
return im
|
| 40 |
+
|
| 41 |
+
except Exception as e:
|
| 42 |
+
print(f"Error during prediction: {e}")
|
| 43 |
+
return img
|
| 44 |
|
| 45 |
# Custom CSS for font styling
|
| 46 |
css = """
|
|
|
|
| 60 |
}
|
| 61 |
"""
|
| 62 |
|
| 63 |
+
# Create interface
|
| 64 |
iface = gr.Interface(
|
| 65 |
fn=predict_image,
|
| 66 |
inputs=[
|
| 67 |
gr.Image(type="pil", label="Upload Image"),
|
| 68 |
gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence threshold"),
|
| 69 |
gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU threshold"),
|
|
|
|
| 70 |
],
|
| 71 |
outputs=gr.Image(type="pil", label="Detection Results"),
|
| 72 |
title="YOLOv8m Defence Object Detection",
|
|
|
|
| 77 |
Vehicles (car, truck, tank, bus, van), Ships (cargo, yacht, cruise, warship, sailboat),
|
| 78 |
and specialized items (drone, missile).
|
| 79 |
|
| 80 |
+
**Note:** Running on the Free Tier - inference may take longer than expected.
|
| 81 |
+
|
| 82 |
Developed for DSTA Brainhack 2025 - TIL-AI Category (Semi-Finalist)
|
| 83 |
""",
|
| 84 |
examples=[
|
| 85 |
+
["examples/test1.jpg", 0.25, 0.45],
|
| 86 |
+
["examples/test2.jpg", 0.25, 0.45],
|
| 87 |
+
["examples/test3.jpg", 0.25, 0.45],
|
| 88 |
+
["examples/test4.jpg", 0.25, 0.45],
|
| 89 |
+
["examples/test5.jpg", 0.25, 0.45],
|
| 90 |
+
["examples/test6.jpg", 0.25, 0.45],
|
| 91 |
+
["examples/test7.jpg", 0.25, 0.45],
|
| 92 |
+
["examples/test8.jpg", 0.25, 0.45],
|
| 93 |
+
["examples/test9.jpg", 0.25, 0.45],
|
| 94 |
+
["examples/test10.jpg", 0.25, 0.45],
|
| 95 |
],
|
| 96 |
+
css=css,
|
| 97 |
+
cache_examples=True
|
| 98 |
)
|
| 99 |
|
| 100 |
+
if __name__ == "__main__":
|
| 101 |
+
iface.launch(share=True)
|