Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from ultralytics import YOLO
|
4 |
+
from PIL import Image
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
# Load your model
|
8 |
+
model = YOLO('yolov8m_defence.pt') # Replace with your model path
|
9 |
+
|
10 |
+
# Define class names (based on your 18 categories)
|
11 |
+
class_names = {
|
12 |
+
0: "Cargo Aircraft", 1: "Commercial Aircraft", 2: "Drone", 3: "Fighter Jet",
|
13 |
+
4: "Fighter Plane", 5: "Helicopter", 6: "Light Aircraft", 7: "Missile",
|
14 |
+
8: "Truck", 9: "Car", 10: "Tank", 11: "Bus", 12: "Van",
|
15 |
+
13: "Cargo Ship", 14: "Yacht", 15: "Cruise Ship", 16: "Warship", 17: "Sailboat"
|
16 |
+
}
|
17 |
+
|
18 |
+
def predict(image):
|
19 |
+
"""Run inference on uploaded image"""
|
20 |
+
if image is None:
|
21 |
+
return None, "Please upload an image"
|
22 |
+
|
23 |
+
# Run inference
|
24 |
+
results = model(image)
|
25 |
+
|
26 |
+
# Get the plotted image with bounding boxes
|
27 |
+
annotated_image = results[0].plot()
|
28 |
+
|
29 |
+
# Convert BGR to RGB for display
|
30 |
+
annotated_image = annotated_image[..., ::-1]
|
31 |
+
|
32 |
+
# Generate detection summary
|
33 |
+
detections = results[0].boxes
|
34 |
+
if len(detections) == 0:
|
35 |
+
summary = "No objects detected"
|
36 |
+
else:
|
37 |
+
summary = f"Detected {len(detections)} objects:\n\n"
|
38 |
+
for i, box in enumerate(detections):
|
39 |
+
class_id = int(box.cls[0])
|
40 |
+
confidence = float(box.conf[0])
|
41 |
+
class_name = class_names.get(class_id, f"Class {class_id}")
|
42 |
+
summary += f"• {class_name}: {confidence:.2%}\n"
|
43 |
+
|
44 |
+
return annotated_image, summary
|
45 |
+
|
46 |
+
# Create Gradio interface
|
47 |
+
iface = gr.Interface(
|
48 |
+
fn=predict,
|
49 |
+
inputs=gr.Image(type="pil", label="Upload Image"),
|
50 |
+
outputs=[
|
51 |
+
gr.Image(type="numpy", label="Detection Results"),
|
52 |
+
gr.Textbox(label="Detection Summary", lines=10)
|
53 |
+
],
|
54 |
+
title="🛡️ YOLOv8m Defence Object Detection",
|
55 |
+
description="""
|
56 |
+
Upload an image to detect military and civilian vehicles, aircraft, and ships.
|
57 |
+
|
58 |
+
**Detectable Objects:** Aircraft (cargo, commercial, fighter, helicopter, etc.),
|
59 |
+
Vehicles (car, truck, tank, bus, van), Ships (cargo, yacht, cruise, warship, sailboat),
|
60 |
+
and specialized items (drone, missile).
|
61 |
+
|
62 |
+
*Developed for DSTA Brainhack 2025 - TIL-AI Category*
|
63 |
+
""",
|
64 |
+
examples=[
|
65 |
+
["example1.jpg"], # Add your example images
|
66 |
+
["example2.jpg"],
|
67 |
+
["example3.jpg"],
|
68 |
+
],
|
69 |
+
theme=gr.themes.Soft(),
|
70 |
+
allow_flagging="never"
|
71 |
+
)
|
72 |
+
|
73 |
+
if __name__ == "__main__":
|
74 |
+
iface.launch()
|