import gradio as gr import PIL.Image as Image from ultralytics import YOLO model = None def predict_image(img, conf_threshold, iou_threshold, model_name): """Predicts objects in an image using YOLOv8m Defence model with adjustable confidence and IOU thresholds.""" global model model = YOLO(model_name) results = model.predict( source=img, conf=conf_threshold, iou=iou_threshold, show_labels=True, show_conf=True, imgsz=640, ) for r in results: im_array = r.plot() im = Image.fromarray(im_array[..., ::-1]) return im # Custom CSS for font styling css = """ body, .gradio-container { font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif !important; } .gr-button { font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif !important; font-weight: 500 !important; } .gr-box h1 { font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif !important; font-weight: 600 !important; } .gr-box p { font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif !important; } """ iface = gr.Interface( fn=predict_image, inputs=[ gr.Image(type="pil", label="Upload Image"), gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence threshold"), gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU threshold"), gr.Radio(choices=["yolov8m_defence.pt"], label="Model Name", value="yolov8m_defence.pt"), ], outputs=gr.Image(type="pil", label="Detection Results"), title="YOLOv8m Defence Object Detection", description=""" Upload images to detect military and civilian vehicles, aircraft, and ships using our fine-tuned YOLOv8m model. **Detectable Objects (18 categories):** Aircraft (cargo, commercial, fighter, helicopter, etc.), Vehicles (car, truck, tank, bus, van), Ships (cargo, yacht, cruise, warship, sailboat), and specialized items (drone, missile). Developed for DSTA Brainhack 2025 - TIL-AI Category (Semi-Finalist) """, examples=[ ["examples/test1.jpg", 0.25, 0.45, "yolov8m_defence.pt"], ["examples/test2.jpg", 0.25, 0.45, "yolov8m_defence.pt"], ["examples/test3.jpg", 0.25, 0.45, "yolov8m_defence.pt"], ["examples/test4.jpg", 0.25, 0.45, "yolov8m_defence.pt"], ["examples/test5.jpg", 0.25, 0.45, "yolov8m_defence.pt"], ["examples/test6.jpg", 0.25, 0.45, "yolov8m_defence.pt"], ["examples/test7.jpg", 0.25, 0.45, "yolov8m_defence.pt"], ["examples/test8.jpg", 0.25, 0.45, "yolov8m_defence.pt"], ["examples/test9.jpg", 0.25, 0.45, "yolov8m_defence.pt"], ["examples/test10.jpg", 0.25, 0.45, "yolov8m_defence.pt"], ], css=css ) iface.launch(share=True)