File size: 74,607 Bytes
3ddc43a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d52e22a
 
 
 
 
 
 
0254196
d52e22a
 
 
 
 
 
 
 
3ddc43a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
514a727
3ddc43a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
514a727
3ddc43a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9303bc2
3ddc43a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d52e22a
3ddc43a
d52e22a
 
 
 
 
3ddc43a
d52e22a
3ddc43a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b80f0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ddc43a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
514a727
3ddc43a
 
 
514a727
 
5a67302
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
from fastapi import FastAPI, HTTPException, Query as QueryParam, UploadFile, File, Request
from fastapi.responses import JSONResponse
from pydantic import BaseModel, Field
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
from qdrant_client import QdrantClient
from qdrant_client.models import VectorParams, Distance, PointStruct, Filter, SearchRequest
from langchain.agents import Tool, AgentExecutor, create_openai_tools_agent
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain.memory import ConversationBufferMemory
from langchain.document_loaders import PyPDFLoader, TextLoader, CSVLoader, Docx2txtLoader, BSHTMLLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from typing import Optional, List, Dict, Any
import os
import warnings
import base64
import requests
import tempfile
import uuid
import json
import redis
from dotenv import load_dotenv
from datetime import datetime

# Pandas AI imports
import re
import urllib.parse
import pandas as pd
import dask.dataframe as dd
from math import ceil
import psycopg2
from pandasai import SmartDataframe
from pandasai.llm.openai import OpenAI as PandasOpenAI

# Import your existing S3 connection details
from retrive_secrects import *  # CONNECTIONS_HOST, etc.

import tempfile
import json
from typing import List, Dict, Any, Optional

# Suppress warnings
warnings.filterwarnings("ignore", message="Qdrant client version.*is incompatible.*")

load_dotenv()

app = FastAPI(title="Combined AI Agent with Qdrant Collections and Redis Session Management")

# Environment variables
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
if not OPENAI_API_KEY:
    raise ValueError("❌ OPENAI_API_KEY not set in environment variables")

QDRANT_COLLECTION_NAME = os.getenv("QDRANT_COLLECTION_NAME", "vatsav_test_1")

# Qdrant Configuration - Using cloud instance
QDRANT_API_KEY = "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJhY2Nlc3MiOiJtIiwiZXhwIjoxNzY0MTQ5OTc3fQ.l_2R-Eyb_530887EGLUkawZQamhPGVklDMlaVs0bDqo"
QDRANT_URL = "https://09476415-f871-4664-9c92-2f7f17c223ee.eu-central-1-0.aws.cloud.qdrant.io"

# Fallback to local Qdrant if needed
QDRANT_HOST = os.getenv("QDRANT_HOST", "127.0.0.1")
QDRANT_PORT = int(os.getenv("QDRANT_PORT", 6333))

# Redis Configuration
REDIS_URL = os.getenv("REDIS_URL")
REDIS_HOST = os.getenv("REDIS_HOST", "127.0.0.1")
REDIS_PORT = int(os.getenv("REDIS_PORT", 6379))
REDIS_PASSWORD = os.getenv("REDIS_PASSWORD")

# S3 Constants (from your original code)
S3_Bucket_Name = 'ingenspark-user-files'
S3_Raw_Files_Folder = 'User-Uploaded-Raw-Files'
S3_Modified_Files_Folder = 'Modified-Files/'
S3_Output_Files_Folder = 'Output-Files/'
S3_Published_Results_Folder = 'Published-Results/'
S3_Ingen_Customer_Output = 'Ingen-Customer/'
Dominant_Segmentation_Output = 'Dominant-Segmentation/'
Trend_Segmentation_Output = 'Trend-Segmentation/'
Decile_Quartile_segmentation_Output = 'Decile-Quartile-Segmentation/'
Combined_Segmentation_Output = 'Combine-Segmentation/'
Custom_Segmentation_Output = 'Custom-Segmentation/'
Customer_360_Output = 'Customer-360/'
Merge_file_folder = S3_Modified_Files_Folder + 'IngenData-Merged-Tables/'
S3_Dev_Doc_Images_Folder = 'Developers-Documentation-Images/'
S3_Temporary_Files_Folder = S3_Raw_Files_Folder
S3_App_Specific_Data = 'Application-Specific-Data/'
S3_Transformation_Tables_Folder = 'Modified-Files/Modified-Tables/Transformation-Tables/'
cloud_front_url = "https://files.dev.ingenspark.com/"

# Initialize Qdrant client with fallback
def get_qdrant_client():
    """Initialize Qdrant client with fallback to local instance"""
    try:
        # Try cloud instance first
        client = QdrantClient(
            url=QDRANT_URL,
            api_key=QDRANT_API_KEY
        )
        # Test connection
        collections = client.get_collections()
        print(f"βœ… Connected to cloud Qdrant: {QDRANT_URL}")
        return client
    except Exception as e:
        print(f"⚠️ Cloud Qdrant failed: {e}, trying local...")
        try:
            # Fallback to local
            client = QdrantClient(host=QDRANT_HOST, port=QDRANT_PORT)
            client.get_collections()
            print(f"βœ… Connected to local Qdrant: {QDRANT_HOST}:{QDRANT_PORT}")
            return client
        except Exception as e2:
            print(f"❌ Both Qdrant connections failed: {e2}")
            raise HTTPException(status_code=500, detail=f"Qdrant connection failed: {str(e2)}")

# Initialize Redis client
def get_redis_client():
    """Initialize Redis client with fallback to local Redis"""
    try:
        if REDIS_URL:
            # Use deployed Redis URL
            redis_client = redis.from_url(
                REDIS_URL,
                decode_responses=True,
                socket_connect_timeout=5,
                socket_timeout=5
            )
            # Test connection
            redis_client.ping()
            print(f"βœ… Connected to deployed Redis: {REDIS_URL}")
            return redis_client
        else:
            # Use local Redis
            redis_client = redis.StrictRedis(
                host=REDIS_HOST,
                port=REDIS_PORT,
                password=REDIS_PASSWORD,
                decode_responses=True,
                socket_connect_timeout=5,
                socket_timeout=5
            )
            # Test connection
            redis_client.ping()
            print(f"βœ… Connected to local Redis: {REDIS_HOST}:{REDIS_PORT}")
            return redis_client
    except Exception as e:
        print(f"❌ Redis connection failed: {e}")
        raise HTTPException(status_code=500, detail=f"Redis connection failed: {str(e)}")

# Initialize clients
qdrant_client = get_qdrant_client()
redis_client = get_redis_client()

# Initialize models
embedding_model = OpenAIEmbeddings(
    model="text-embedding-3-large",
    openai_api_key=OPENAI_API_KEY,
)

llm = ChatOpenAI(model="gpt-4o", temperature=0, openai_api_key=OPENAI_API_KEY)

# ------------------- MIDDLEWARE -------------------

@app.middleware("http")
async def add_success_flag(request: Request, call_next):
    response = await call_next(request)

    # Only modify JSON responses
    if "application/json" in response.headers.get("content-type", ""):
        try:
            body = b"".join([chunk async for chunk in response.body_iterator])
            data = json.loads(body.decode())

            # Add success flag
            data["success"] = 200 <= response.status_code < 300

            # Build new JSONResponse (auto handles Content-Length)
            response = JSONResponse(
                content=data,
                status_code=response.status_code,
                headers={k: v for k, v in response.headers.items() if k.lower() != "content-length"},
            )
        except Exception:
            # fallback if response is not JSON parseable
            pass
    return response

# === PANDAS AI FUNCTIONS ===

def read_parquet_file_from_s3(ufuid=None, columns_list=None, records_count=None, file_location=''):
    """
    Reads a Parquet file from S3 using Dask and returns it as a Pandas DataFrame.
    
    Parameters:
        ufuid (int): Optional user_file_upload_id to fetch S3 path from DB.
        columns_list (list/str): Columns to read.
        records_count (int): Not used currently.
        file_location (str): Direct file path in S3.

    Returns:
        pandas.DataFrame
    """
    try:
        # Connect to PostgreSQL
        conn = psycopg2.connect(
            host=CONNECTIONS_HOST,
            database=CONNECTIONS_DB,
            user=CONNECTIONS_USER,
            password=CONNECTIONS_PASS
        )
        cursor = conn.cursor()

        if ufuid is not None:
            query = """SELECT file_name, table_names FROM public.user_file_upload WHERE user_file_upload_id = %s"""
            cursor.execute(query, (ufuid,))
            file = cursor.fetchone()
            if not file:
                raise ValueError(f"No file found for ufuid: {ufuid}")
            file_name, s3_file_path = file
        else:
            # Normalize input path
            file_location = re.sub(r'\.parquet(?!$)', '', file_location)
            s3_file_path = file_location if file_location.endswith('.parquet') else file_location + '.parquet'

        # Extract relative S3 path
        s3_file_path = urllib.parse.unquote(s3_file_path.split(f"{S3_Bucket_Name}/")[-1])
        if not s3_file_path.endswith('.parquet'):
            s3_file_path += '.parquet'

        # Parse columns if given as comma-separated string
        if columns_list and not isinstance(columns_list, list):
            columns_list = [col.strip(' "\'') for col in columns_list.split(',')]

        print(f"\n{'!' * 100}\nReading from: s3://{S3_Bucket_Name}/{s3_file_path}\n")

        # Read using Dask
        ddf = dd.read_parquet(
            f"s3://{S3_Bucket_Name}/{s3_file_path}",
            engine="pyarrow",
            columns=columns_list,
            assume_missing=True
        )

        ddf = ddf.repartition(npartitions=8)  # Optimize for processing
        print("Reading Parquet file from S3 completed successfully.")
        
        # Close database connection
        cursor.close()
        conn.close()
        
        return ddf.compute()

    except Exception as e:
        print(f"❌ Error reading Parquet file: {e}")
        return pd.DataFrame()  # Return empty DataFrame on error

def pandas_agent(filepath: str, query: str) -> str:
    """
    PandasAI agent that reads data from S3 and answers queries about the data.
    
    Parameters:
        filepath (str): S3 file path or ufuid
        query (str): Natural language query about the data
    
    Returns:
        str: Answer from PandasAI
    """
    try:
        # Check if filepath is a number (ufuid) or a file path
        if filepath.isdigit():
            # It's a ufuid
            data = read_parquet_file_from_s3(ufuid=int(filepath))
        else:
            # It's a file path
            data = read_parquet_file_from_s3(file_location=filepath)

        if data.empty:
            return "❌ No data found or failed to load the file. Please check the file path or ufuid."

        # Initialize PandasAI LLM
        if not OPENAI_API_KEY:
            return "❌ OPENAI_API_KEY is not set in environment variables."

        pandas_llm = PandasOpenAI(api_token=OPENAI_API_KEY)

        # Create SmartDataframe
        sdf = SmartDataframe(data, config={"llm": pandas_llm})

        # Ask the question
        print(f"πŸ” Processing query: {query}")
        result = sdf.chat(query)
        
        # Handle different types of results
        if isinstance(result, str):
            return f"πŸ“Š Analysis Result:\n{result}"
        elif isinstance(result, (pd.DataFrame, pd.Series)):
            return f"πŸ“Š Analysis Result:\n{result.to_string()}"
        else:
            return f"πŸ“Š Analysis Result:\n{str(result)}"

    except Exception as e:
        error_msg = f"❌ Error in pandas_agent: {str(e)}"
        print(error_msg)
        return error_msg

# === INPUT SCHEMAS ===


# Add these new Pydantic models after the existing schemas
class DatasetInfoRequest(BaseModel):
    userLoginId: int
    orgId: int
    project_id: int
    auth_token: str

class DatasetInfoResponse(BaseModel):
    project_id: int
    dataset_info: Dict[str, Any]
    ingestion_status: Optional[str] = None


# Chat and Session Schemas
class Query(BaseModel):
    message: str

class ProjectRequest(BaseModel):
    userLoginId: int
    orgId: int
    auth_token: str

class BotQuery(BaseModel):
    userLoginId: int
    orgId: int
    auth_token: str
    session_id: Optional[str] = None
    message: str

class PandasAgentQuery(BaseModel):
    filepath: str = Field(..., description="S3 file path or ufuid")
    query: str = Field(..., description="Natural language query about the data")

class SessionResponse(BaseModel):
    session_id: str
    userLoginId: int
    orgId: int
    created_at: str
    status: str
    title: Optional[str] = "New Chat"

class MessageResponse(BaseModel):
    message_id: str
    session_id: str
    role: str  # "user" or "assistant"
    message: str
    timestamp: str

class ChatHistoryResponse(BaseModel):
    session_id: str
    messages: List[MessageResponse]
    total_messages: int

class UpdateSessionTitleRequest(BaseModel):
    new_title: str

# Qdrant Collection Schemas
class CollectionRequest(BaseModel):
    name: str
    vector_size: int
    distance: str = "Cosine"  # Cosine, Euclid, Dot

class UpdateCollectionRequest(BaseModel):
    vector_size: int | None = None
    distance: str | None = None

# === SESSION MANAGEMENT FUNCTIONS ===


def should_ingest_data(user_login_id: int) -> bool:
    """Check if data should be ingested based on number of sessions."""
    try:
        response = requests.get(f"http://127.0.0.1:8000/sessions?userLoginId={user_login_id}")
        if response.status_code == 200:
            data = response.json()
            return data.get("total_sessions", 0) <= 0
        else:
            print(f"Failed to fetch sessions: {response.status_code}")
            return False
    except Exception as e:
        print(f"Error checking session count: {e}")
        return False
#_________________________file_ingestion_services___________________________________

def create_session(userLoginId: int, orgId: int, auth_token: str) -> dict:
    """Create a new chat session"""
    session_id = str(uuid.uuid4())
    session_data = {
        "session_id": session_id,
        "userLoginId": userLoginId,
        "orgId": orgId,
        "auth_token": auth_token,
        "created_at": datetime.now().isoformat(),
        "status": "active",
        "title": "New Chat"  # Default title, will be updated after first message
    }
    
    # Store session in Redis with 24 hour TTL
    redis_client.setex(
        f"session:{session_id}", 
        86400,  # 24 hours
        json.dumps(session_data)
    )
    
    # Initialize empty chat history
    redis_client.setex(
        f"chat:{session_id}",
        86400,  # 24 hours
        json.dumps([])
    )
    
    # Initialize conversation memory
    redis_client.setex(
        f"memory:{session_id}",
        86400,  # 24 hours
        json.dumps([])
    )
    
    return session_data

def get_session(session_id: str) -> dict:
    """Get session data from Redis"""
    session_data = redis_client.get(f"session:{session_id}")
    if not session_data:
        raise HTTPException(status_code=404, detail="Session not found or expired")
    return json.loads(session_data)

def add_message_to_session(session_id: str, role: str, message: str) -> str:
    """Add message to session chat history"""
    message_id = str(uuid.uuid4())
    message_data = {
        "message_id": message_id,
        "session_id": session_id,
        "role": role,
        "message": message,
        "timestamp": datetime.now().isoformat()
    }
    
    # Get current chat history
    chat_history = redis_client.get(f"chat:{session_id}")
    if chat_history:
        messages = json.loads(chat_history)
    else:
        messages = []
    
    # Add new message
    messages.append(message_data)
    
    # Update chat history in Redis with extended TTL
    redis_client.setex(
        f"chat:{session_id}",
        86400,  # 24 hours
        json.dumps(messages)
    )
    
    return message_id

def get_session_memory(session_id: str) -> List[Dict]:
    """Get conversation memory for session"""
    memory_data = redis_client.get(f"memory:{session_id}")
    if memory_data:
        return json.loads(memory_data)
    return []

def update_session_memory(session_id: str, messages: List[Dict]):
    """Update conversation memory for session"""
    redis_client.setex(
        f"memory:{session_id}",
        86400,  # 24 hours
        json.dumps(messages)
    )

def update_session_title(session_id: str):
    """Update session title after first message"""
    try:
        # Get session data
        session_data = redis_client.get(f"session:{session_id}")
        if not session_data:
            return
        
        session = json.loads(session_data)
        
        # Only update if current title is "New Chat"
        if session.get("title", "New Chat") == "New Chat":
            new_title = generate_session_title(session_id)
            session["title"] = new_title
            
            # Update session in Redis
            redis_client.setex(
                f"session:{session_id}",
                86400,  # 24 hours
                json.dumps(session)
            )
            
    except Exception as e:
        print(f"Error updating session title: {e}")
        pass  # Don't fail the request if title update fails

def generate_session_title(session_id: str) -> str:
    """Generate and optionally save a title for the session based on chat history"""
    try:
        # Check session
        session_data = redis_client.get(f"session:{session_id}")
        if session_data:
            session = json.loads(session_data)
            if "user_title" in session:
                # Don't override user-defined titles
                return session["user_title"]

        # Get chat history
        chat_data = redis_client.get(f"chat:{session_id}")
        if not chat_data:
            return "New Chat"

        messages = json.loads(chat_data)
        if not messages:
            return "New Chat"

        first_user_message = next(
            (msg["message"] for msg in messages if msg["role"] == "user"), None
        )

        if not first_user_message:
            return "New Chat"

        # Generate title with LLM
        title_prompt = f"""Generate a short, descriptive title (maximum 6 words) for a chat conversation that starts with this message:

"{first_user_message[:200]}"

Return only the title, no quotes or additional text. The title should capture the main topic or intent of the conversation."""

        try:
            response = llm.invoke(title_prompt)
            title = response.content.strip().replace('"', '').replace("'", "")

            if len(title) > 50:
                title = title[:47] + "..."

        except Exception as e:
            print(f"Error generating title with LLM: {e}")
            # Fallback title
            words = first_user_message.split()[:4]
            title = " ".join(words) + ("..." if len(words) >= 4 else "")

        # Save to session
        if session_data:
            session["generated_title"] = title
            if not session.get("user_title"):
                session["title"] = title  # Only if no user title
            redis_client.setex(f"session:{session_id}", 86400, json.dumps(session))

        return title

    except Exception as e:
        print(f"Error in generate_session_title: {e}")
        return "New Chat"


def get_user_sessions(userLoginId: int) -> List[dict]:
    """Get all sessions for a user with generated titles"""
    sessions = []
    # Scan for all session keys
    for key in redis_client.scan_iter(match="session:*"):
        session_data = redis_client.get(key)
        if session_data:
            session = json.loads(session_data)
            if session["userLoginId"] == userLoginId:
                # Generate title based on chat history
                session["title"] = generate_session_title(session["session_id"])
                sessions.append(session)
    
    # Sort sessions by created_at (most recent first)
    sessions.sort(key=lambda x: x["created_at"], reverse=True)
    return sessions

def delete_session(session_id: str):
    """Delete session and associated data"""
    # Delete session data
    redis_client.delete(f"session:{session_id}")
    # Delete chat history
    redis_client.delete(f"chat:{session_id}")
    # Delete memory
    redis_client.delete(f"memory:{session_id}")

# === UTILITY FUNCTIONS ===

def get_encoded_auth_token(user: int, token: str) -> str:
    auth_string = f"{user}:{token}"
    return base64.b64encode(auth_string.encode("utf-8")).decode("utf-8")

def fetch_user_projects(userLoginId: int, orgId: int, auth_token: str):
    url = "https://japidemo.dev.ingenspark.com/fetchUserProjects"
    payload = {
        "userLoginId": userLoginId,
        "orgId": orgId
    }
    
    headers = {
        'accept': 'application/json, text/plain, */*',
        'authorization': f'Basic {auth_token}',
        'content-type': 'application/json; charset=UTF-8'
    }
    
    try:
        response = requests.post(url, headers=headers, json=payload)
        response.raise_for_status()
        return response.json()
    except requests.exceptions.RequestException as e:
        raise HTTPException(status_code=response.status_code if 'response' in locals() else 500,
                          detail=str(e))

def format_project_response(data: dict) -> str:
    my_projects = data.get("data", {}).get("Myprojects", [])
    other_projects = data.get("data", {}).get("Otherprojects", [])
    
    all_projects = []
    
    for project in my_projects:
        all_projects.append({
            "type": "Your Project",
            "projectNm": project["projectNm"],
            "projectId": project["projectId"],
            "created_dttm": project["created_dttm"].split('.')[0],
            "description": project["description"],
            "categoryName": project["categoryName"]
        })
    
    for project in other_projects:
        all_projects.append({
            "type": "Other Project",
            "projectNm": project["projectNm"],
            "projectId": project["projectId"],
            "created_dttm": project["created_dttm"].split('.')[0],
            "description": project["description"],
            "categoryName": project["categoryName"]
        })
    
    if not all_projects:
        return "❌ No projects found."
    
    # Build the formatted string
    result = [f"βœ… You have access to {len(all_projects)} project(s):\n"]
    for i, project in enumerate(all_projects, 1):
        result.append(f"{i}. Project Name: {project['projectNm']} ({project['type']})")
        result.append(f"   Project ID: {project['projectId']}")
        result.append(f"   Created On: {project['created_dttm']}")
        result.append(f"   Description: {project['description']}")
        result.append(f"   Category: {project['categoryName']}\n")
    return "\n".join(result)

# === TOOL FUNCTIONS ===

# def search_documents(query: str) -> str:
#     """Search through ingested documents and get relevant information."""
#     try:
#         # Generate embedding for the query
#         query_vector = embedding_model.embed_query(query)
        
#         # Search in Qdrant
#         search_result = qdrant_client.search(
#             collection_name=QDRANT_COLLECTION_NAME,
#             query_vector=query_vector,
#             limit=5,
#         )
        
#         if not search_result:
#             return "No relevant information found in the knowledge base."
        
#         # Convert results to text content
#         context_texts = []
#         sources = []
        
#         for hit in search_result:
#             context_texts.append(hit.payload["text"])
#             sources.append(hit.payload.get("source", "unknown"))
        
#         # Create a simple prompt for answering based on context
#         context = "\n\n".join(context_texts)
#         unique_sources = list(set(sources))
        
#         # Use the LLM directly to answer the message based on context
#         prompt = f"""Based on the following context, answer the message: {query}

# Context:
# {context}

# Please provide a comprehensive answer based on the context above. If the context doesn't contain enough information to answer the message, say so clearly."""

#         response = llm.invoke(prompt)
        
#         return f"{response.content}\n\nSources: {', '.join(unique_sources)}"
        
#     except Exception as e:
#         return f"Error searching documents: {str(e)}"

import requests

def search_documents(query: str) -> str:
    collection_name = 9  # As per the URL path in your curl example
    top_k = 5  # Default value, as shown in the curl

    url = f"https://srivatsavdamaraju-accusaga-bot.hf.space/search/{collection_name}"
    params = {
        "query": query,
        "top_k": top_k
    }
    headers = {
        "accept": "application/json"
    }

    response = requests.get(url, params=params, headers=headers)

    if response.status_code == 200:
        return response.text  # or response.json() if you want to work with structured data
    else:
        return f"Error {response.status_code}: {response.text}"


# Global variables to store auth context (for tool functions)
_current_user_id = None
_current_org_id = None
_current_auth_token = None

def get_user_projects(userLoginId: str) -> str:
    """Get list of projects for a user."""
    try:
        # Use global auth context if available
        if _current_auth_token and _current_user_id:
            user_id = _current_user_id
            org_id = _current_org_id or 1
            auth_token = _current_auth_token
        else:
            return "❌ Authentication token required. Please provide auth_token in your request."
        
        # Encode auth token using the actual user ID and provided token
        encoded_token = get_encoded_auth_token(user_id, auth_token)
        
        # Fetch projects
        data = fetch_user_projects(user_id, org_id, encoded_token)
        
        # Format and return the project list
        formatted = format_project_response(data)
        return formatted
        
    except ValueError:
        return "❌ Invalid userLoginId format. Please provide a valid number."
    except Exception as e:
        return f"❌ Error fetching projects: {str(e)}"

# def pandas_data_analysis(query_with_filepath: str) -> str:
#     """
#     Tool for data analysis using PandasAI.
#     Input format: 'filepath|query' where filepath is S3 path or ufuid, and query is the analysis question.
#     """
#     try:
#         # Parse the input to extract filepath and query
#         parts = query_with_filepath.split('|', 1)
#         if len(parts) != 2:
#             return "❌ Invalid input format. Please use: 'filepath|query' format."
        
#         filepath, query = parts
#         filepath = filepath.strip()
#         query = query.strip()
        
#         if not filepath or not query:
#             return "❌ Both filepath and query are required."
        
#         # Use the pandas_agent function
#         result = pandas_agent(filepath, query)
#         return result
        
#     except Exception as e:
#         return f"❌ Error in pandas data analysis: {str(e)}"



def get_dataset_info(userLoginId: int, orgId: int, project_id: int, user: str, token: str):
    """
    Fetch dataset info from the API.
    """
    # Encode auth token
    auth_token = get_encoded_auth_token(user, token)

    url = f"https://papidemo.dev.ingenspark.com/get_dataset_info?user_login_id={userLoginId}&project_id={project_id}"

    headers = {
        'accept': 'application/json, text/plain, */*',
        'authorization': f'Basic {auth_token}',
        'content-type': 'application/json; charset=utf-8',
        'origin': 'https://demo-app.dev.ingenspark.com',
        'referer': 'https://demo-app.dev.ingenspark.com/',
        'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/139.0.0.0 Safari/537.36',
    }

    try:
        response = requests.get(url, headers=headers)
        response.raise_for_status()
        return response.json()
    except requests.exceptions.RequestException as e:
        return {"error": str(e)}
    except ValueError:
        return {"error": "Invalid JSON response", "text": response.text}

def check_and_create_user_collection(userLoginId: int) -> bool:
    """
    Check if a collection named `userLoginId` exists.
    If not, create the collection.
    Returns True if collection exists or created successfully, False otherwise.
    """
    try:
        # Get all collections
        collections = qdrant_client.get_collections()
        collection_names = [col.name for col in collections.collections]
        
        collection_name = str(userLoginId)
        
        if collection_name in collection_names:
            print(f"Collection '{collection_name}' already exists")
            return True
        else:
            print(f"Creating new collection for user {userLoginId}...")
            
            # Create collection with standard parameters
            qdrant_client.recreate_collection(
                collection_name=collection_name,
                vectors_config=VectorParams(size=3072, distance=Distance.COSINE),
            )
            
            print(f"Collection '{collection_name}' created successfully")
            return True
            
    except Exception as e:
        print(f"Error managing collection for user {userLoginId}: {str(e)}")
        return False

def ingest_datasets_to_collection(collection_name: str, datasets_data: Dict[str, Any]) -> bool:
    """
    Ingest datasets information to a user's collection.
    """
    try:
        # Convert datasets data to a formatted text for ingestion
        datasets_text = json.dumps(datasets_data, indent=2, ensure_ascii=False)
        
        # Create a temporary file with the datasets information
        with tempfile.NamedTemporaryFile(mode='w', suffix='.txt', delete=False, encoding='utf-8') as tmp_file:
            tmp_file.write(f"Dataset Information Summary\n")
            tmp_file.write("=" * 50 + "\n\n")
            tmp_file.write(datasets_text)
            tmp_file_path = tmp_file.name
        
        try:
            # Load the temporary file
            loader = TextLoader(tmp_file_path, encoding='utf-8')
            docs = loader.load()
            
            # Split into chunks
            splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
            chunks = splitter.split_documents(docs)
            
            texts = [chunk.page_content for chunk in chunks]
            
            # Generate embeddings
            embeddings = embedding_model.embed_documents(texts)
            
            # Create points for Qdrant
            points = [
                PointStruct(
                    id=str(uuid.uuid4()),
                    vector=embeddings[i],
                    payload={
                        "text": texts[i], 
                        "source": "dataset_info",
                        "type": "dataset_summary"
                    },
                )
                for i in range(len(texts))
            ]
            
            # Upsert to Qdrant
            qdrant_client.upsert(collection_name=collection_name, points=points)
            
            print(f"Successfully ingested dataset information to collection '{collection_name}'")
            return True
            
        finally:
            # Clean up temporary file
            os.unlink(tmp_file_path)
            
    except Exception as e:
        print(f"Error ingesting datasets to collection {collection_name}: {str(e)}")
        return False

def fetch_and_ingest_user_datasets(userLoginId: int, orgId: int, auth_token: str) -> Dict[str, Any]:
    """
    Fetch all user projects and their datasets, then ingest to user's collection.
    """
    try:
        # Step 1: Ensure user collection exists
        collection_created = check_and_create_user_collection(userLoginId)
        if not collection_created:
            return {
                "success": False,
                "message": "Failed to create/verify user collection",
                "datasets": {}
            }
        
        # Step 2: Fetch user projects
        encoded_token = get_encoded_auth_token(userLoginId, auth_token)
        projects_data = fetch_user_projects(userLoginId, orgId, encoded_token)
        
        # Step 3: Extract project IDs
        project_ids = []
        for proj in projects_data.get("data", {}).get("Myprojects", []):
            project_ids.append(proj["projectId"])
        for proj in projects_data.get("data", {}).get("Otherprojects", []):
            project_ids.append(proj["projectId"])
        
        # Step 4: Fetch dataset info for each project
        all_datasets = {}
        for project_id in project_ids:
            dataset_info = get_dataset_info(userLoginId, orgId, project_id, userLoginId, auth_token)
            all_datasets[str(project_id)] = dataset_info
        
        # Step 5: Ingest datasets to user's collection
        ingestion_success = ingest_datasets_to_collection(str(userLoginId), all_datasets)
        
        return {
            "success": True,
            "collection_name": str(userLoginId),
            "projects_found": len(project_ids),
            "datasets": all_datasets,
            "ingestion_success": ingestion_success,
            "message": f"Successfully processed {len(project_ids)} projects and {'ingested' if ingestion_success else 'failed to ingest'} dataset information"
        }
        
    except Exception as e:
        return {
            "success": False,
            "message": f"Error processing user datasets: {str(e)}",
            "datasets": {}
        }



def get_user_datasets(userLoginId_str: str) -> str:
    """
    Tool to fetch user datasets and ingest them into user's collection.
    This tool automatically manages collections and dataset ingestion.
    """
    try:
        # Use global auth context
        if not _current_auth_token or not _current_user_id or not _current_org_id:
            return "Authentication context required. Please provide auth_token in your request."
        
        userLoginId = int(userLoginId_str) if userLoginId_str.isdigit() else _current_user_id
        orgId = _current_org_id
        auth_token = _current_auth_token
        
        # Fetch and process datasets
        result = fetch_and_ingest_user_datasets(userLoginId, orgId, auth_token)
        
        if result["success"]:
            datasets_count = len(result["datasets"])
            return f"""βœ… Dataset Management Complete:
            
πŸ“Š Found {result['projects_found']} projects with dataset information
πŸ“ Collection '{result['collection_name']}' ready
πŸ’Ύ Ingestion Status: {'Success' if result['ingestion_success'] else 'Failed'}

Dataset Summary:
{json.dumps(result['datasets'], indent=2) if datasets_count > 0 else 'No datasets found'}

You can now search through your datasets using document search queries!"""
        else:
            return f"❌ Error: {result['message']}"
            
    except ValueError:
        return "❌ Invalid userLoginId format. Please provide a valid number."
    except Exception as e:
        return f"❌ Error managing user datasets: {str(e)}"

import os
import re
import urllib.parse
import psycopg2
import pandas as pd

from langchain_openai import ChatOpenAI
from langchain_experimental.agents import create_pandas_dataframe_agent

from retrive_secrects import *  # PostgreSQL and other secrets

# Constants
S3_Bucket_Name = 'ingenspark-user-files'


def read_parquet_file_from_s3(file_location):
    """
    Reads a Parquet file from S3 using pandas and returns it as a DataFrame.

    Args:
        file_location (str): S3-relative path to the Parquet file.

    Returns:
        pd.DataFrame
    """
    # Normalize and clean path
    file_location = re.sub(r'\.parquet(?!$)', '', file_location)
    s3_file_path = file_location if file_location.endswith('.parquet') else file_location + '.parquet'

    # Extract relative S3 path
    s3_file_path = s3_file_path.split(f"{S3_Bucket_Name}/")[-1]
    s3_file_path = urllib.parse.unquote(s3_file_path)

    if not s3_file_path.endswith('.parquet'):
        s3_file_path += '.parquet'

    s3_url = f"s3://{S3_Bucket_Name}/{s3_file_path}"
    print(f"\nπŸ”Ή Reading from S3: {s3_url}\n")

    # Read Parquet file using pandas
    df = pd.read_parquet(s3_url, engine='pyarrow')

    return df


def pandas_ai(input_text: str, api_key: str = None, model: str = "gpt-4") -> str:
    """
    Parses the input string to extract the S3 path and user query,
    reads the data, and answers the query using LLM.

    Args:
        input_text (str): Input in the format "S3_path , natural language question"
        api_key (str): OpenAI API key (or read from env)
        model (str): OpenAI model to use (default: gpt-4)

    Returns:
        str: Answer from the LLM
    """
    try:
        # Split input into S3 path and question
        parts = input_text.split(",", 1)
        if len(parts) != 2:
            raise ValueError("Input must be in the format: <S3_path>, <question>")

        file_path = parts[0].strip()
        user_query = parts[1].strip()

        # Get OpenAI key
        openai_key = api_key or os.getenv("OPENAI_API_KEY")
        if not openai_key:
            raise ValueError("OpenAI API key must be provided or set in environment variable 'OPENAI_API_KEY'.")

        # Read DataFrame from S3
        df = read_parquet_file_from_s3(file_location=file_path)

        # Initialize OpenAI LLM
        llm = ChatOpenAI(
            temperature=0,
            model=model,
            openai_api_key=openai_key
        )

        # Create LangChain agent
        agent_executor = create_pandas_dataframe_agent(
            llm=llm,
            df=df,
            agent_type="tool-calling",
            verbose=False,
            handle_parsing_errors=True,
            include_df_in_prompt=True,
            number_of_head_rows=5,
            allow_dangerous_code=True
        )

        # Ask the question
        result = agent_executor.invoke({"input": user_query})
        return result["output"]

    except Exception as e:
        return f"❌ Error: {str(e)}"


# =============== Example Usage ===============
# if __name__ == "__main__":
#     user_input = input("Enter your input (format: <S3_Path>, <Question>):\n")
#     answer = pandas_ai(user_input)
#     print("\nπŸ“Š Answer:\n", answer)


# === CREATE TOOLS ===

dataset_management_tool = Tool(
    name="manage_user_datasets",
    description="""Use this tool to automatically fetch user datasets and set up their personal collection.
    This tool will:
    1. Create a user-specific collection if it doesn't exist
    2. Fetch all user projects and their dataset information
    3. Ingest the dataset information into the user's collection for searching
    
    Perfect for when users want to:
    - Set up their dataset collection
    - Refresh their dataset information
    - Prepare their datasets for searching and analysis
    
    Input should be the userLoginId (e.g., '25') or leave empty to use current user.
    Note: This tool requires authentication context to be set.""",
    func=get_user_datasets
)


document_search_tool = Tool(
    name="document_search",
    description="""Use this tool to search through ingested documents and get relevant information from the knowledge base. 
    Perfect for answering messages about uploaded documents, manuals, or any content that was previously stored.
    Input should be a search query or message about the documents.""",
    func=search_documents
)

project_list_tool = Tool(
    name="get_user_projects",
    description="""Use this tool to get the list of projects for a user. 
    Perfect for when users ask about their projects, want to see available projects, or need project information.
    Input should be the userLoginId (e.g., '25').
    Note: This tool requires authentication context to be set.""",
    func=get_user_projects
)

pandas_analysis_tool = Tool(
    name="pandas_data_analysis",
    description="""Use this tool for data analysis on CSV/Parquet files using PandasAI.
    Perfect for when users ask questions about data analysis, statistics, insights, or want to query their datasets.
    Input format: 'filepath, query' where:
    - filepath: S3 file path (e.g., 'User-Uploaded-Raw-Files/Data2004csv1754926601269756') or ufuid (e.g., '123')
    - query: Natural language question about the data (e.g., 'What are the top 5 values?', 'Show me summary statistics')
    
    Examples:
    - 'User-Uploaded-Raw-Files/mydata.csv, What is this file about?'
    - '123, Show me the first 5 rows'
    - 'Modified-Files/processed_data, What are the most common values in column X?'
    """,
    func=pandas_ai
)

# === AGENT SETUP ===

# def create_agent_with_session_memory(session_id: str):
#     """Create agent with session memory from Redis"""
    
#     # Get memory from Redis
#     memory_messages = get_session_memory(session_id)
    
#     agent_prompt = ChatPromptTemplate.from_messages([
#         ("system", """You are a helpful AI assistant with access to multiple tools and conversation memory:

# 1. **Document Search**: Search through uploaded documents and knowledge base
# 2. **Project Management**: Get list of user projects and project information  
# 3. **Data Analysis**: Analyze CSV/Parquet files using PandasAI for insights, statistics, and queries

# Your capabilities:
# - Answer messages about documents using the document search tool
# - Help users find their projects and project information
# - Perform data analysis on uploaded datasets using natural language queries
# - Remember previous conversations in this session
# - Provide general assistance and information
# - Use appropriate tools based on user queries

# Guidelines:
# - Use the document search tool when users ask about specific content, documentation, or information that might be in uploaded files
# - Use the project tool when users ask about projects, want to see their projects, or need project-related information
# - Use the pandas analysis tool when users ask about data analysis, statistics, insights, or want to query datasets
# - For pandas analysis, you need both a filepath (S3 path or ufuid) and a query - ask for missing information if needed
# - Reference previous conversation context when relevant
# - Be clear about which tool you're using and what information you're providing
# - If you're unsure which tool to use, you can ask for clarification
# - Provide helpful, accurate, and well-formatted responses

# Remember: Always use the most appropriate tool based on the user's message and conversation context to provide the best possible answer."""),
#         MessagesPlaceholder(variable_name="chat_history"),
#         ("user", "{input}"),
#         MessagesPlaceholder(variable_name="agent_scratchpad"),
#     ])
    
#     # Create memory object
#     memory = ConversationBufferMemory(
#         memory_key="chat_history",
#         return_messages=True
#     )
    
#     # Load existing messages into memory
#     for msg in memory_messages:
#         if msg["role"] == "user":
#             memory.chat_memory.add_user_message(msg["message"])
#         else:
#             memory.chat_memory.add_ai_message(msg["message"])
    
#     # Create tools list
#     tools = [document_search_tool, project_list_tool, pandas_analysis_tool]
    
#     # Create the agent
#     agent = create_openai_tools_agent(llm, tools, agent_prompt)
    
#     # Create the agent executor with memory
#     agent_executor = AgentExecutor(
#         agent=agent, 
#         tools=tools, 
#         verbose=True,
#         memory=memory
#     )
    
#     return agent_executor, memory


#Update the create_agent_with_session_memory function to include the new tool
def create_agent_with_session_memory(session_id: str):
    """Create agent with session memory from Redis - Updated with dataset management"""
    
    # Get memory from Redis
    memory_messages = get_session_memory(session_id)
    
    agent_prompt = ChatPromptTemplate.from_messages([
        ("system", """You are a helpful AI assistant with access to multiple tools and conversation memory:

1. **Document Search**: Search through uploaded documents and user's dataset knowledge base
2. **Project Management**: Get list of user projects and project information  
3. **Data Analysis**: Analyze CSV/Parquet files using PandasAI for insights, statistics, and queries
4. **Dataset Management**: Automatically fetch and organize user datasets into searchable collections

Your capabilities:
- Answer questions about documents using the document search tool
- Help users find their projects and project information
- Perform data analysis on uploaded datasets using natural language queries
- Automatically manage user datasets and make them searchable
- Remember previous conversations in this session
- Provide general assistance and information

Guidelines:
- Use the document search tool when users ask about specific content, documentation, or dataset information
- Use the project tool when users ask about projects, want to see their projects, or need project-related information
- Use the pandas analysis tool when users ask about data analysis, statistics, insights, or want to query specific datasets
- Use the dataset management tool when users want to set up their datasets for searching, or refresh their dataset collection
- For pandas analysis, you need both a filepath (S3 path or ufuid) and a query - ask for missing information if needed
- The dataset management tool automatically creates user collections and ingests their dataset information
- Reference previous conversation context when relevant
- Be clear about which tool you're using and what information you're providing
- If you're unsure which tool to use, you can ask for clarification
- Provide helpful, accurate, and well-formatted responses

Dataset Management Flow:
1. When users first interact or ask about their datasets, suggest using dataset management to set up their collection
2. After dataset management completes, users can search their datasets using document search
3. For specific data analysis, direct them to use pandas analysis with specific file paths

Remember: Always use the most appropriate tool based on the user's query and conversation context to provide the best possible answer."""),
        MessagesPlaceholder(variable_name="chat_history"),
        ("user", "{input}"),
        MessagesPlaceholder(variable_name="agent_scratchpad"),
    ])
    
    # Create memory object
    memory = ConversationBufferMemory(
        memory_key="chat_history",
        return_messages=True
    )
    
    # Load existing messages into memory
    for msg in memory_messages:
        if msg["role"] == "user":
            memory.chat_memory.add_user_message(msg["message"])
        else:
            memory.chat_memory.add_ai_message(msg["message"])
    
    # Create tools list - Updated with dataset management tool
    tools = [document_search_tool, project_list_tool, pandas_analysis_tool, dataset_management_tool]
    
    # Create the agent
    agent = create_openai_tools_agent(llm, tools, agent_prompt)
    
    # Create the agent executor with memory
    agent_executor = AgentExecutor(
        agent=agent, 
        tools=tools, 
        verbose=True,
        memory=memory
    )
    
    return agent_executor, memory

# ------------------- COLLECTION CRUD ENDPOINTS -------------------

@app.post("/collections/")
def create_collection(req: CollectionRequest):
    """Create a new Qdrant collection"""
    distance_map = {
        "Cosine": Distance.COSINE,
        "Euclid": Distance.EUCLID,
        "Dot": Distance.DOT,
    }
    if req.distance not in distance_map:
        raise HTTPException(status_code=400, detail="Invalid distance metric")

    try:
        qdrant_client.recreate_collection(
            collection_name=req.name,
            vectors_config=VectorParams(size=req.vector_size, distance=distance_map[req.distance]),
        )
        return {"message": f"βœ… Collection '{req.name}' created successfully"}
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

@app.get("/collections/")
def list_collections():
    """List all Qdrant collections"""
    try:
        collections = qdrant_client.get_collections()
        return collections.dict()
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

@app.get("/collections/{name}")
def get_collection(name: str):
    """Get information about a specific collection"""
    try:
        collection_info = qdrant_client.get_collection(collection_name=name)
        return collection_info.dict()
    except Exception as e:
        raise HTTPException(status_code=404, detail=f"Collection '{name}' not found: {str(e)}")

@app.put("/collections/{name}")
def update_collection(name: str, req: UpdateCollectionRequest):
    """Update a collection's configuration"""
    distance_map = {
        "Cosine": Distance.COSINE,
        "Euclid": Distance.EUCLID,
        "Dot": Distance.DOT,
    }
    try:
        current = qdrant_client.get_collection(name)

        vector_size = req.vector_size if req.vector_size else current.config.params.vectors.size
        distance = distance_map[req.distance] if req.distance else current.config.params.vectors.distance

        qdrant_client.recreate_collection(
            collection_name=name,
            vectors_config=VectorParams(size=vector_size, distance=distance),
        )
        return {"message": f"♻️ Collection '{name}' updated successfully"}
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

@app.delete("/collections/{name}")
def delete_collection(name: str):
    """Delete a collection"""
    try:
        qdrant_client.delete_collection(collection_name=name)
        return {"message": f"πŸ—‘οΈ Collection '{name}' deleted successfully"}
    except Exception as e:
        raise HTTPException(status_code=404, detail=f"Collection '{name}' not found: {str(e)}")

# ------------------- INGESTION ENDPOINTS -------------------

@app.post("/ingest/{collection_name}")
async def ingest_file(collection_name: str, file: UploadFile = File(...)):
    """Ingest a file into a Qdrant collection"""
    suffix = os.path.splitext(file.filename)[-1].lower()
    with tempfile.NamedTemporaryFile(delete=False, suffix=suffix) as tmp:
        tmp.write(await file.read())
        tmp_path = tmp.name

    try:
        # Select loader based on file suffix
        if suffix == ".pdf":
            loader = PyPDFLoader(tmp_path)
        elif suffix in [".txt", ".md"]:
            loader = TextLoader(tmp_path)
        elif suffix == ".csv":
            loader = CSVLoader(file_path=tmp_path)
        elif suffix == ".docx":
            loader = Docx2txtLoader(tmp_path)
        elif suffix == ".html":
            loader = BSHTMLLoader(file_path=tmp_path)
        else:
            raise HTTPException(status_code=400, detail=f"❌ Unsupported file type: {suffix}")

        docs = loader.load()
        splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
        chunks = splitter.split_documents(docs)

        texts = [chunk.page_content for chunk in chunks]

        # Embed documents synchronously (OpenAIEmbeddings is sync)
        embeddings = embedding_model.embed_documents(texts)

        # Verify embedding dimension matches collection config
        collection_info = qdrant_client.get_collection(collection_name=collection_name)
        expected_dim = collection_info.config.params.vectors.size
        if len(embeddings[0]) != expected_dim:
            raise HTTPException(
                status_code=400,
                detail=f"Embedding dimension mismatch: expected {expected_dim}, got {len(embeddings[0])}",
            )

        points = [
            PointStruct(
                id=str(uuid.uuid4()),
                vector=embeddings[i],
                payload={"text": texts[i], "source": file.filename},
            )
            for i in range(len(texts))
        ]

        qdrant_client.upsert(collection_name=collection_name, points=points)

    except HTTPException as he:
        raise he  # re-raise HTTP exceptions directly
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Ingestion failed: {str(e)}")
    finally:
        os.remove(tmp_path)

    return {"message": f"πŸ“„ '{file.filename}' ingested into '{collection_name}' successfully"}

@app.get("/search/{collection_name}")
def search_collection(
    collection_name: str,
    query: str = QueryParam(..., description="Your question or search query"),
    top_k: int = 5
):
    """Search within a specific collection"""
    try:
        # Generate embedding for the query
        query_vector = embedding_model.embed_query(query)

        # Perform similarity search in Qdrant
        search_result = qdrant_client.search(
            collection_name=collection_name,
            query_vector=query_vector,
            limit=top_k,
        )

        # Format results
        results = [
            {
                "score": hit.score,
                "payload": hit.payload,
            }
            for hit in search_result
        ]

        return {
            "query": query,
            "collection": collection_name,
            "results": results,
        }

    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Search failed: {str(e)}")

# === SESSION MANAGEMENT ENDPOINTS ===

@app.post("/sessions", response_model=SessionResponse)
def create_new_session(userLoginId: int, orgId: int, auth_token: str):
    """Create a new chat session"""
    try:
        session_data = create_session(userLoginId, orgId, auth_token)
        return SessionResponse(**session_data)
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error creating session: {str(e)}")

@app.get("/sessions")
def list_user_sessions(userLoginId: int):
    """List all sessions for a user"""
    try:
        sessions = get_user_sessions(userLoginId)
        return {
            "userLoginId": userLoginId,
            "total_sessions": len(sessions),
            "sessions": sessions
        }
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error fetching sessions: {str(e)}")

@app.delete("/sessions/{session_id}")
def delete_user_session(session_id: str):
    """Delete/close a session"""
    try:
        # Verify session exists
        get_session(session_id)
        
        # Delete session
        delete_session(session_id)
        
        return {
            "message": f"Session {session_id} deleted successfully",
            "session_id": session_id
        }
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error deleting session: {str(e)}")

@app.get("/sessions/{session_id}/history", response_model=ChatHistoryResponse)
def get_session_history(session_id: str, n: int = QueryParam(50, description="Number of recent messages to return")):
    """Get chat history for a session"""
    try:
        # Verify session exists
        get_session(session_id)
        
        # Get chat history
        chat_data = redis_client.get(f"chat:{session_id}")
        if not chat_data:
            return ChatHistoryResponse(
                session_id=session_id,
                messages=[],
                total_messages=0
            )
        
        messages = json.loads(chat_data)
        
        # Get the last n messages (or all if less than n)
        recent_messages = messages[-n:] if len(messages) > n else messages
        
        # Convert to MessageResponse objects
        message_responses = [MessageResponse(**msg) for msg in recent_messages]
        
        return ChatHistoryResponse(
            session_id=session_id,
            messages=message_responses,
            total_messages=len(messages)
        )
        
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error fetching chat history: {str(e)}")
@app.put("/sessions/{session_id}/title")
def update_session_title_endpoint(session_id: str, request: UpdateSessionTitleRequest):
    """Update the user-defined title of an existing session"""
    try:
        session_data = redis_client.get(f"session:{session_id}")
        if not session_data:
            raise HTTPException(status_code=404, detail="Session not found or expired")

        session = json.loads(session_data)

        new_title = request.new_title.strip()
        if not new_title:
            raise HTTPException(status_code=400, detail="New title cannot be empty")
        if len(new_title) > 100:
            raise HTTPException(status_code=400, detail="Title cannot exceed 100 characters")

        old_title = session.get("title", "New Chat")
        session["user_title"] = new_title
        session["title"] = new_title  # Effective title = user-defined
        session["last_updated"] = datetime.now().isoformat()

        redis_client.setex(f"session:{session_id}", 86400, json.dumps(session))

        return {
            "message": "Session title updated successfully",
            "session_id": session_id,
            "old_title": old_title,
            "new_title": new_title
        }

    except HTTPException:
        raise
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error updating session title: {str(e)}")


@app.put("/sessions/{session_id}/refresh-title")
def refresh_session_title(session_id: str):
    """Manually refresh/regenerate session title"""
    try:
        # Verify session exists
        session_data = get_session(session_id)
        
        # Generate new title
        new_title = generate_session_title(session_id)
        
        # Update session
        session_data["title"] = new_title
        redis_client.setex(
            f"session:{session_id}",
            86400,  # 24 hours
            json.dumps(session_data)
        )
        
        return {
            "session_id": session_id,
            "new_title": new_title,
            "message": "Session title updated successfully"
        }
        
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error updating session title: {str(e)}")
    

#_____________data injestion ___________________________
import base64
import json
import requests
from fastapi import HTTPException


def get_encoded_auth_token(user: int, token: str) -> str:
    auth_string = f"{user}:{token}"
    return base64.b64encode(auth_string.encode("utf-8")).decode("utf-8")


def get_dataset_info(userLoginId: int, orgId: int, project_id: int, user: str, token: str):
    auth_token = get_encoded_auth_token(user, token)
    url = f"https://papidemo.dev.ingenspark.com/get_dataset_info?user_login_id={userLoginId}&project_id={project_id}"

    headers = {
        'accept': 'application/json, text/plain, */*',
        'authorization': f'Basic {auth_token}',
        'content-type': 'application/json; charset=utf-8',
        'origin': 'https://demo-app.dev.ingenspark.com',
        'referer': 'https://demo-app.dev.ingenspark.com/',
        'user-agent': 'Mozilla/5.0'
    }

    try:
        response = requests.get(url, headers=headers)
        response.raise_for_status()
        return response.json()
    except requests.exceptions.RequestException as e:
        return {"error": str(e)}
    except ValueError:
        return {"error": "Invalid JSON response", "text": response.text}


def fetch_user_projects(userLoginId: int, orgId: int, auth_token: str):
    url = "https://japidemo.dev.ingenspark.com/fetchUserProjects"
    payload = {"userLoginId": userLoginId, "orgId": orgId}
    headers = {
        'accept': 'application/json, text/plain, */*',
        'authorization': f'Basic {auth_token}',
        'content-type': 'application/json; charset=UTF-8'
    }

    try:
        response = requests.post(url, headers=headers, json=payload)
        response.raise_for_status()
        return response.json()
    except requests.exceptions.RequestException as e:
        raise HTTPException(status_code=response.status_code if 'response' in locals() else 500, detail=str(e))


def format_project_response(data: dict) -> str:
    my_projects = data.get("data", {}).get("Myprojects", [])
    other_projects = data.get("data", {}).get("Otherprojects", [])
    all_projects = []

    for project in my_projects + other_projects:
        all_projects.append({
            "type": "Your Project" if project in my_projects else "Other Project",
            "projectNm": project["projectNm"],
            "projectId": project["projectId"],
            "created_dttm": project["created_dttm"].split('.')[0],
            "description": project["description"],
            "categoryName": project["categoryName"]
        })

    if not all_projects:
        return "❌ No projects found."

    result = [f"βœ… You have access to {len(all_projects)} project(s):\n"]
    for i, project in enumerate(all_projects, 1):
        result.append(f"{i}. Project Name: {project['projectNm']} ({project['type']})")
        result.append(f"   Project ID: {project['projectId']}")
        result.append(f"   Created On: {project['created_dttm']}")
        result.append(f"   Description: {project['description']}")
        result.append(f"   Category: {project['categoryName']}\n")
    return "\n".join(result)


def save_to_txt(data: dict, filename: str = "datasets_summary.txt"):
    with open(filename, "w", encoding="utf-8") as f:
        json.dump(data, f, indent=4, ensure_ascii=False)
    print(f"βœ… Dataset info saved to {filename}")


def check_and_create_collection(userLoginId: str, base_url="https://srivatsavdamaraju-accusaga-bot.hf.space") -> bool:
    get_url = f"{base_url}/collections/"
    headers = {'accept': 'application/json'}

    try:
        response = requests.get(get_url, headers=headers)
        response.raise_for_status()
        data = response.json()

        collections = data if isinstance(data, list) else data.get("collections", [])
        collection_names = [coll.get("name") for coll in collections if isinstance(coll, dict)]

        if str(userLoginId) in collection_names:
            print(f"Collection named '{userLoginId}' found.")
            return True
        else:
            print("Collection not found. Creating a new one...")

            post_data = {
                "name": str(userLoginId),
                "vector_size": 3072,
                "distance": "Cosine"
            }
            post_response = requests.post(get_url, headers={
                'accept': 'application/json',
                'Content-Type': 'application/json'
            }, json=post_data)
            post_response.raise_for_status()
            print(f"βœ… Collection created: {post_response.json()}")
            return True
    except requests.exceptions.RequestException as e:
        print(f"Error calling collection API: {e}")
    return False


def ingest_file_to_collection(collection_name: str, file_path: str, base_url="https://srivatsavdamaraju-accusaga-bot.hf.space") -> bool:
    url = f"{base_url}/ingest/{collection_name}"
    headers = {'accept': 'application/json'}

    try:
        with open(file_path, 'rb') as f:
            files = {'file': (file_path, f, 'text/plain')}
            response = requests.post(url, headers=headers, files=files)
            response.raise_for_status()
            print(f"βœ… File '{file_path}' ingested into '{collection_name}'.")
            print("Response:", response.json())
            return True
    except FileNotFoundError:
        print(f"❌ File not found: {file_path}")
    except requests.exceptions.HTTPError as http_err:
        print(f"❌ HTTP error: {http_err}")
        print("Response content:", response.text)
    except requests.exceptions.RequestException as e:
        print(f"❌ Request exception: {e}")
    return False




# === MAIN CHAT AND AGENT ENDPOINTS ===

@app.post("/bot")
def chat_with_bot(query: BotQuery):
    """Main bot endpoint with session management and agent tools"""
    try:
        # Set global auth context for tools
        global _current_user_id, _current_org_id, _current_auth_token
        _current_user_id = query.userLoginId
        _current_org_id = query.orgId
        _current_auth_token = query.auth_token
        
        session_id = query.session_id
        
        # Create new session if not provided
        if not session_id:
            session_data = create_session(query.userLoginId, query.orgId, query.auth_token)
            session_id = session_data["session_id"]
        else:
            # Verify existing session
            get_session(session_id)

        file_path = "datasets_summary.txt"  # The file created earlier with dataset info
        # Step 1: Check/create collection
        success = check_and_create_collection(_current_user_id)
        # Step 2: If collection ready, ingest the file
        # Only ingest if user has <= 1 session
        if success:
            if should_ingest_data(_current_user_id):
                print("User has 1 or fewer sessions. Ingesting data...")
                ingest_file_to_collection(_current_user_id, file_path)
            else:
                print("User has more than 1 session. Skipping ingestion.")
        else:
             print("Could not create or find the collection. Aborting ingestion.")

        # Add user message to session
        user_message_id = add_message_to_session(session_id, "user", query.message)
        
        # Create agent with session memory
        agent_executor, memory = create_agent_with_session_memory(session_id)
        
        # Use the agent to process the query
        result = agent_executor.invoke({"input": query.message})
        
        # Add AI response to session
        ai_message_id = add_message_to_session(session_id, "assistant", result["output"])
        
        # Update session memory in Redis
        updated_messages = []
        for message in memory.chat_memory.messages:
            if hasattr(message, 'content'):
                role = "user" if message.__class__.__name__ == "HumanMessage" else "assistant"
                updated_messages.append({
                    "role": role,
                    "message": message.content,
                    "timestamp": datetime.now().isoformat()
                })
        
        update_session_memory(session_id, updated_messages)
        
        # Update session title after first user message
        update_session_title(session_id)
        
        # Clear auth context after use
        _current_user_id = None
        _current_org_id = None
        _current_auth_token = None
        
        return {
            "session_id": session_id,
            "user_message_id": user_message_id,
            "ai_message_id": ai_message_id,
            "message": query.message,
            "answer": result["output"],
            "userLoginId": query.userLoginId,
            "agent_used": True
        }
        
    except Exception as e:
        # Clear auth context on error
        _current_user_id = None
        _current_org_id = None
        _current_auth_token = None
        
        raise HTTPException(status_code=500, detail=f"Error processing chat: {str(e)}")

# === DIRECT TOOL ENDPOINTS ===

@app.post("/chat-documents")
def chat_documents_only(query: Query):
    """Direct document search without agent"""
    try:
        result = search_documents(query.message)
        return {
            "message": query.message,
            "answer": result,
            "tool_used": "document_search"
        }
    except Exception as e:
        return {
            "message": query.message,
            "answer": f"An error occurred: {str(e)}",
            "tool_used": "document_search"
        }

@app.post("/list-projects")
def list_projects(request: ProjectRequest):
    """Direct project listing without agent"""
    try:
        # Use the provided auth token and userLoginId
        encoded_token = get_encoded_auth_token(request.userLoginId, request.auth_token)

        # Fetch projects
        data = fetch_user_projects(request.userLoginId, request.orgId, encoded_token)
        
        # Format and return the project list
        formatted = format_project_response(data)
        return {
            "projects": formatted,
            "tool_used": "project_list"
        }
    except Exception as e:
        return {
            "error": f"An error occurred: {str(e)}",
            "tool_used": "project_list"
        }

@app.post("/chat-with-pandas-agent")
def chat_with_pandas_agent(request: PandasAgentQuery):
    """Direct pandas AI agent endpoint for data analysis"""
    try:
        result = pandas_agent(request.filepath, request.query)
        
        return {
            "filepath": request.filepath,
            "query": request.query,
            "answer": result,
            "tool_used": "pandas_agent",
            "timestamp": datetime.now().isoformat()
        }
        
    except Exception as e:
        error_msg = f"An error occurred: {str(e)}"
        return {
            "filepath": request.filepath,
            "query": request.query,
            "answer": error_msg,
            "tool_used": "pandas_agent",
            "error": True,
            "timestamp": datetime.now().isoformat()
        }



@app.delete("/delete_user_completely/{user_login_id}")
def delete_user_completely(user_login_id: int):
    BASE_URL = "https://srivatsavdamaraju-accusaga-bot.hf.space"
    headers = {
        "accept": "application/json"
    }

    # Step 1: Delete Collection
    collection_url = f"{BASE_URL}/collections/{user_login_id}"
    collection_response = requests.delete(collection_url, headers=headers)

    if collection_response.status_code != 200:
        raise HTTPException(
            status_code=collection_response.status_code,
            detail=f"Failed to delete collection. Response: {collection_response.text}"
        )

    # Step 2: Get Sessions
    sessions_url = f"{BASE_URL}/sessions?userLoginId={user_login_id}"
    sessions_response = requests.get(sessions_url, headers=headers)

    if sessions_response.status_code != 200:
        raise HTTPException(
            status_code=sessions_response.status_code,
            detail=f"Failed to fetch sessions. Response: {sessions_response.text}"
        )

    sessions_data = sessions_response.json()
    sessions = sessions_data.get("sessions", [])

    deleted_sessions = []
    failed_sessions = []

    # Step 3: Delete Each Session
    for session in sessions:
        session_id = session["session_id"]
        delete_session_url = f"{BASE_URL}/sessions/{session_id}"
        delete_session_response = requests.delete(delete_session_url, headers=headers)

        if delete_session_response.status_code == 200:
            deleted_sessions.append(session_id)
        else:
            failed_sessions.append({
                "session_id": session_id,
                "status_code": delete_session_response.status_code,
                "error": delete_session_response.text
            })

    return {
        "user_login_id": user_login_id,
        "collection_deleted": True,
        "deleted_sessions": deleted_sessions,
        "failed_sessions": failed_sessions
    }

# === SYSTEM INFORMATION ENDPOINTS ===

@app.get("/redis-info")
def redis_info():
    """Get Redis connection information"""
    try:
        info = redis_client.info()
        return {
            "redis_connected": True,
            "redis_version": info.get("redis_version"),
            "used_memory": info.get("used_memory_human"),
            "connected_clients": info.get("connected_clients"),
            "total_keys": redis_client.dbsize()
        }
    except Exception as e:
        return {
            "redis_connected": False,
            "error": str(e)
        }

@app.get("/qdrant-info")
def qdrant_info():
    """Get Qdrant connection information"""
    try:
        collections = qdrant_client.get_collections()
        return {
            "qdrant_connected": True,
            "total_collections": len(collections.collections),
            "collections": [col.name for col in collections.collections]
        }
    except Exception as e:
        return {
            "qdrant_connected": False,
            "error": str(e)
        }
    
@app.post("/fetch-dataset-info")
def fetch_dataset_info_endpoint(request: DatasetInfoRequest):
    """Direct endpoint to fetch dataset info for a specific project"""
    try:
        dataset_info = get_dataset_info(
            request.userLoginId, 
            request.orgId, 
            request.project_id, 
            request.userLoginId, 
            request.auth_token
        )
        
        return DatasetInfoResponse(
            project_id=request.project_id,
            dataset_info=dataset_info
        )
        
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error fetching dataset info: {str(e)}")

@app.post("/setup-user-datasets")
def setup_user_datasets_endpoint(request: ProjectRequest):
    """Direct endpoint to set up user datasets and collection"""
    try:
        result = fetch_and_ingest_user_datasets(
            request.userLoginId, 
            request.orgId, 
            request.auth_token
        )
        
        return {
            "userLoginId": request.userLoginId,
            "collection_name": str(request.userLoginId),
            **result
        }
        
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error setting up user datasets: {str(e)}")

@app.get("/health")
def health():
    """System health check - Updated"""
    try:
        redis_client.ping()
        redis_status = "connected"
    except:
        redis_status = "disconnected"
    
    try:
        qdrant_client.get_collections()
        qdrant_status = "connected"
    except:
        qdrant_status = "disconnected"
    
    return {
        "status": "ok",
        "tools": ["document_search", "project_list", "pandas_data_analysis", "dataset_management"], 
        "agent": "active",
        "session_management": "enabled",
        "dataset_management": "enabled",
        "redis_status": redis_status,
        "qdrant_status": qdrant_status,
        "pandas_ai": "enabled",
        "total_sessions": len(list(redis_client.scan_iter(match="session:*"))) if redis_status == "connected" else 0,
        "collections_available": qdrant_status == "connected"
    }
if __name__ == "__main__":
    import uvicorn
    try:
        uvicorn.run(app)
    except KeyboardInterrupt:
        print("\nπŸ›‘ Server stopped gracefully")
    except Exception as e:
        print(f"❌ Server error: {e}")

#bot10.py