File size: 36,154 Bytes
0f87a6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048


from fastapi import FastAPI, HTTPException, Query as QueryParam
from pydantic import BaseModel, Field
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
from qdrant_client import QdrantClient
from langchain.agents import Tool, AgentExecutor, create_openai_tools_agent
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain.memory import ConversationBufferMemory
from typing import Optional, List, Dict, Any
import os
import warnings
import base64
import requests
from dotenv import load_dotenv
from datetime import datetime
import json
import uuid
import redis

# Pandas AI imports
import re
import urllib.parse
import pandas as pd
import dask.dataframe as dd
from math import ceil
import psycopg2
from pandasai import SmartDataframe
from pandasai.llm.openai import OpenAI as PandasOpenAI




from fastapi import FastAPI, Request
from fastapi.responses import JSONResponse
import json


# Import your existing S3 connection details
from retrive_secrects import *  # CONNECTIONS_HOST, etc.

# Suppress warnings
warnings.filterwarnings("ignore", message="Qdrant client version.*is incompatible.*")

load_dotenv()

app = FastAPI(title="AI Agent with Redis Session Management and Pandas AI")

# Environment variables
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
QDRANT_COLLECTION_NAME = os.getenv("QDRANT_COLLECTION_NAME", "vatsav_test_1")
QDRANT_HOST = os.getenv("QDRANT_HOST", "127.0.0.1")
QDRANT_PORT = int(os.getenv("QDRANT_PORT", 6333))

# Redis Configuration
REDIS_URL = os.getenv("REDIS_URL")
REDIS_HOST = os.getenv("REDIS_HOST", "127.0.0.1")
REDIS_PORT = int(os.getenv("REDIS_PORT", 6379))
REDIS_PASSWORD = os.getenv("REDIS_PASSWORD")

# S3 Constants (from your original code)
S3_Bucket_Name = 'ingenspark-user-files'
S3_Raw_Files_Folder = 'User-Uploaded-Raw-Files'
S3_Modified_Files_Folder = 'Modified-Files/'
S3_Output_Files_Folder = 'Output-Files/'
S3_Published_Results_Folder = 'Published-Results/'
S3_Ingen_Customer_Output = 'Ingen-Customer/'
Dominant_Segmentation_Output = 'Dominant-Segmentation/'
Trend_Segmentation_Output = 'Trend-Segmentation/'
Decile_Quartile_segmentation_Output = 'Decile-Quartile-Segmentation/'
Combined_Segmentation_Output = 'Combine-Segmentation/'
Custom_Segmentation_Output = 'Custom-Segmentation/'
Customer_360_Output = 'Customer-360/'
Merge_file_folder = S3_Modified_Files_Folder + 'IngenData-Merged-Tables/'
S3_Dev_Doc_Images_Folder = 'Developers-Documentation-Images/'
S3_Temporary_Files_Folder = S3_Raw_Files_Folder
S3_App_Specific_Data = 'Application-Specific-Data/'
S3_Transformation_Tables_Folder = 'Modified-Files/Modified-Tables/Transformation-Tables/'
cloud_front_url = "https://files.dev.ingenspark.com/"

# Initialize Redis client
def get_redis_client():
    """Initialize Redis client with fallback to local Redis"""
    try:
        if REDIS_URL:
            # Use deployed Redis URL
            redis_client = redis.from_url(
                REDIS_URL,
                decode_responses=True,
                socket_connect_timeout=5,
                socket_timeout=5
            )
            # Test connection
            redis_client.ping()
            print(f"βœ… Connected to deployed Redis: {REDIS_URL}")
            return redis_client
        else:
            # Use local Redis
            redis_client = redis.StrictRedis(
                host=REDIS_HOST,
                port=REDIS_PORT,
                password=REDIS_PASSWORD,
                decode_responses=True,
                socket_connect_timeout=5,
                socket_timeout=5
            )
            # Test connection
            redis_client.ping()
            print(f"βœ… Connected to local Redis: {REDIS_HOST}:{REDIS_PORT}")
            return redis_client
    except Exception as e:
        print(f"❌ Redis connection failed: {e}")
        raise HTTPException(status_code=500, detail=f"Redis connection failed: {str(e)}")

# Initialize Redis client
redis_client = get_redis_client()

# Initialize models
embedding_model = OpenAIEmbeddings(
    model="text-embedding-3-large",
    openai_api_key=OPENAI_API_KEY,
)

qdrant_client = QdrantClient(host=QDRANT_HOST, port=QDRANT_PORT)
llm = ChatOpenAI(model="gpt-4o", temperature=0, openai_api_key=OPENAI_API_KEY)

# === PANDAS AI FUNCTIONS ===

def read_parquet_file_from_s3(ufuid=None, columns_list=None, records_count=None, file_location=''):
    """
    Reads a Parquet file from S3 using Dask and returns it as a Pandas DataFrame.
    
    Parameters:
        ufuid (int): Optional user_file_upload_id to fetch S3 path from DB.
        columns_list (list/str): Columns to read.
        records_count (int): Not used currently.
        file_location (str): Direct file path in S3.

    Returns:
        pandas.DataFrame
    """
    try:
        # Connect to PostgreSQL
        conn = psycopg2.connect(
            host=CONNECTIONS_HOST,
            database=CONNECTIONS_DB,
            user=CONNECTIONS_USER,
            password=CONNECTIONS_PASS
        )
        cursor = conn.cursor()

        if ufuid is not None:
            query = """SELECT file_name, table_names FROM public.user_file_upload WHERE user_file_upload_id = %s"""
            cursor.execute(query, (ufuid,))
            file = cursor.fetchone()
            if not file:
                raise ValueError(f"No file found for ufuid: {ufuid}")
            file_name, s3_file_path = file
        else:
            # Normalize input path
            file_location = re.sub(r'\.parquet(?!$)', '', file_location)
            s3_file_path = file_location if file_location.endswith('.parquet') else file_location + '.parquet'

        # Extract relative S3 path
        s3_file_path = urllib.parse.unquote(s3_file_path.split(f"{S3_Bucket_Name}/")[-1])
        if not s3_file_path.endswith('.parquet'):
            s3_file_path += '.parquet'

        # Parse columns if given as comma-separated string
        if columns_list and not isinstance(columns_list, list):
            columns_list = [col.strip(' "\'') for col in columns_list.split(',')]

        print(f"\n{'!' * 100}\nReading from: s3://{S3_Bucket_Name}/{s3_file_path}\n")

        # Read using Dask
        ddf = dd.read_parquet(
            f"s3://{S3_Bucket_Name}/{s3_file_path}",
            engine="pyarrow",
            columns=columns_list,
            assume_missing=True
        )

        ddf = ddf.repartition(npartitions=8)  # Optimize for processing
        print("Reading Parquet file from S3 completed successfully.")
        
        # Close database connection
        cursor.close()
        conn.close()
        
        return ddf.compute()

    except Exception as e:
        print(f"❌ Error reading Parquet file: {e}")
        return pd.DataFrame()  # Return empty DataFrame on error

def pandas_agent(filepath: str, query: str) -> str:
    """
    PandasAI agent that reads data from S3 and answers queries about the data.
    
    Parameters:
        filepath (str): S3 file path or ufuid
        query (str): Natural language query about the data
    
    Returns:
        str: Answer from PandasAI
    """
    try:
        # Check if filepath is a number (ufuid) or a file path
        if filepath.isdigit():
            # It's a ufuid
            data = read_parquet_file_from_s3(ufuid=int(filepath))
        else:
            # It's a file path
            data = read_parquet_file_from_s3(file_location=filepath)

        if data.empty:
            return "❌ No data found or failed to load the file. Please check the file path or ufuid."

        # Initialize PandasAI LLM
        if not OPENAI_API_KEY:
            return "❌ OPENAI_API_KEY is not set in environment variables."

        pandas_llm = PandasOpenAI(api_token=OPENAI_API_KEY)

        # Create SmartDataframe
        sdf = SmartDataframe(data, config={"llm": pandas_llm})

        # Ask the question
        print(f"πŸ” Processing query: {query}")
        result = sdf.chat(query)
        
        # Handle different types of results
        if isinstance(result, str):
            return f"πŸ“Š Analysis Result:\n{result}"
        elif isinstance(result, (pd.DataFrame, pd.Series)):
            return f"πŸ“Š Analysis Result:\n{result.to_string()}"
        else:
            return f"πŸ“Š Analysis Result:\n{str(result)}"

    except Exception as e:
        error_msg = f"❌ Error in pandas_agent: {str(e)}"
        print(error_msg)
        return error_msg

# === INPUT SCHEMAS ===

class Query(BaseModel):
    message: str

class ProjectRequest(BaseModel):
    userLoginId: int
    orgId: int
    auth_token: str

class BotQuery(BaseModel):
    userLoginId: int
    orgId: int
    auth_token: str
    session_id: Optional[str] = None
    message: str

class PandasAgentQuery(BaseModel):
    filepath: str = Field(..., description="S3 file path or ufuid")
    query: str = Field(..., description="Natural language query about the data")

class SessionResponse(BaseModel):
    session_id: str
    userLoginId: int
    orgId: int
    created_at: str
    status: str
    title: Optional[str] = "New Chat"

class MessageResponse(BaseModel):
    message_id: str
    session_id: str
    role: str  # "user" or "assistant"
    message: str
    timestamp: str

class ChatHistoryResponse(BaseModel):
    session_id: str
    messages: List[MessageResponse]
    total_messages: int

# === SESSION MANAGEMENT FUNCTIONS ===




@app.middleware("http")
async def add_success_flag(request: Request, call_next):
    response = await call_next(request)

    # Only modify JSON responses
    if "application/json" in response.headers.get("content-type", ""):
        try:
            body = b"".join([chunk async for chunk in response.body_iterator])
            data = json.loads(body.decode())

            # Add success flag
            data["success"] = 200 <= response.status_code < 300

            # Build new JSONResponse (auto handles Content-Length)
            response = JSONResponse(
                content=data,
                status_code=response.status_code,
                headers={k: v for k, v in response.headers.items() if k.lower() != "content-length"},
            )
        except Exception:
            # fallback if response is not JSON parseable
            pass
    return response




def create_session(userLoginId: int, orgId: int, auth_token: str) -> dict:
    """Create a new chat session"""
    session_id = str(uuid.uuid4())
    session_data = {
        "session_id": session_id,
        "userLoginId": userLoginId,
        "orgId": orgId,
        "auth_token": auth_token,
        "created_at": datetime.now().isoformat(),
        "status": "active",
        "title": "New Chat"  # Default title, will be updated after first message
    }
    
    # Store session in Redis with 24 hour TTL
    redis_client.setex(
        f"session:{session_id}", 
        86400,  # 24 hours
        json.dumps(session_data)
    )
    
    # Initialize empty chat history
    redis_client.setex(
        f"chat:{session_id}",
        86400,  # 24 hours
        json.dumps([])
    )
    
    # Initialize conversation memory
    redis_client.setex(
        f"memory:{session_id}",
        86400,  # 24 hours
        json.dumps([])
    )
    
    return session_data

def get_session(session_id: str) -> dict:
    """Get session data from Redis"""
    session_data = redis_client.get(f"session:{session_id}")
    if not session_data:
        raise HTTPException(status_code=404, detail="Session not found or expired")
    return json.loads(session_data)

def add_message_to_session(session_id: str, role: str, message: str) -> str:
    """Add message to session chat history"""
    message_id = str(uuid.uuid4())
    message_data = {
        "message_id": message_id,
        "session_id": session_id,
        "role": role,
        "message": message,
        "timestamp": datetime.now().isoformat()
    }
    
    # Get current chat history
    chat_history = redis_client.get(f"chat:{session_id}")
    if chat_history:
        messages = json.loads(chat_history)
    else:
        messages = []
    
    # Add new message
    messages.append(message_data)
    
    # Update chat history in Redis with extended TTL
    redis_client.setex(
        f"chat:{session_id}",
        86400,  # 24 hours
        json.dumps(messages)
    )
    
    return message_id

def get_session_memory(session_id: str) -> List[Dict]:
    """Get conversation memory for session"""
    memory_data = redis_client.get(f"memory:{session_id}")
    if memory_data:
        return json.loads(memory_data)
    return []

def update_session_memory(session_id: str, messages: List[Dict]):
    """Update conversation memory for session"""
    redis_client.setex(
        f"memory:{session_id}",
        86400,  # 24 hours
        json.dumps(messages)
    )

def update_session_title(session_id: str):
    """Update session title after first message"""
    try:
        # Get session data
        session_data = redis_client.get(f"session:{session_id}")
        if not session_data:
            return
        
        session = json.loads(session_data)
        
        # Only update if current title is "New Chat"
        if session.get("title", "New Chat") == "New Chat":
            new_title = generate_session_title(session_id)
            session["title"] = new_title
            
            # Update session in Redis
            redis_client.setex(
                f"session:{session_id}",
                86400,  # 24 hours
                json.dumps(session)
            )
            
    except Exception as e:
        print(f"Error updating session title: {e}")
        pass  # Don't fail the request if title update fails

def generate_session_title(session_id: str) -> str:
    """Generate a title for the session based on chat history"""
    try:
        # Get chat history
        chat_data = redis_client.get(f"chat:{session_id}")
        if not chat_data:
            return "New Chat"
        
        messages = json.loads(chat_data)
        if not messages:
            return "New Chat"
        
        # Get first user message for title generation
        first_user_message = None
        for msg in messages:
            if msg["role"] == "user":
                first_user_message = msg["message"]
                break
        
        if not first_user_message:
            return "New Chat"
        
        # Generate title using LLM
        title_prompt = f"""Generate a short, descriptive title (maximum 6 words) for a chat conversation that starts with this message:

"{first_user_message[:200]}"

Return only the title, no quotes or additional text. The title should capture the main topic or intent of the conversation."""

        try:
            response = llm.invoke(title_prompt)
            title = response.content.strip()
            
            # Clean and limit title
            title = title.replace('"', '').replace("'", "")
            if len(title) > 50:
                title = title[:47] + "..."
            
            return title if title else "New Chat"
            
        except Exception as e:
            print(f"Error generating title: {e}")
            # Fallback: use first few words of the message
            words = first_user_message.split()[:4]
            return " ".join(words) + ("..." if len(words) >= 4 else "")
            
    except Exception as e:
        print(f"Error in generate_session_title: {e}")
        return "New Chat"

def get_user_sessions(userLoginId: int) -> List[dict]:
    """Get all sessions for a user with generated titles"""
    sessions = []
    # Scan for all session keys
    for key in redis_client.scan_iter(match="session:*"):
        session_data = redis_client.get(key)
        if session_data:
            session = json.loads(session_data)
            if session["userLoginId"] == userLoginId:
                # Generate title based on chat history
                session["title"] = generate_session_title(session["session_id"])
                sessions.append(session)
    
    # Sort sessions by created_at (most recent first)
    sessions.sort(key=lambda x: x["created_at"], reverse=True)
    return sessions

def delete_session(session_id: str):
    """Delete session and associated data"""
    # Delete session data
    redis_client.delete(f"session:{session_id}")
    # Delete chat history
    redis_client.delete(f"chat:{session_id}")
    # Delete memory
    redis_client.delete(f"memory:{session_id}")

# === UTILITY FUNCTIONS ===

def get_encoded_auth_token(user: int, token: str) -> str:
    auth_string = f"{user}:{token}"
    return base64.b64encode(auth_string.encode("utf-8")).decode("utf-8")

def fetch_user_projects(userLoginId: int, orgId: int, auth_token: str):
    url = "https://japidemo.dev.ingenspark.com/fetchUserProjects"
    payload = {
        "userLoginId": userLoginId,
        "orgId": orgId
    }
    
    headers = {
        'accept': 'application/json, text/plain, */*',
        'authorization': f'Basic {auth_token}',
        'content-type': 'application/json; charset=UTF-8'
    }
    
    try:
        response = requests.post(url, headers=headers, json=payload)
        response.raise_for_status()
        return response.json()
    except requests.exceptions.RequestException as e:
        raise HTTPException(status_code=response.status_code if 'response' in locals() else 500,
                          detail=str(e))

def format_project_response(data: dict) -> str:
    my_projects = data.get("data", {}).get("Myprojects", [])
    other_projects = data.get("data", {}).get("Otherprojects", [])
    
    all_projects = []
    
    for project in my_projects:
        all_projects.append({
            "type": "Your Project",
            "projectNm": project["projectNm"],
            "projectId": project["projectId"],
            "created_dttm": project["created_dttm"].split('.')[0],
            "description": project["description"],
            "categoryName": project["categoryName"]
        })
    
    for project in other_projects:
        all_projects.append({
            "type": "Other Project",
            "projectNm": project["projectNm"],
            "projectId": project["projectId"],
            "created_dttm": project["created_dttm"].split('.')[0],
            "description": project["description"],
            "categoryName": project["categoryName"]
        })
    
    if not all_projects:
        return "❌ No projects found."
    
    # Build the formatted string
    result = [f"βœ… You have access to {len(all_projects)} project(s):\n"]
    for i, project in enumerate(all_projects, 1):
        result.append(f"{i}. Project Name: {project['projectNm']} ({project['type']})")
        result.append(f"   Project ID: {project['projectId']}")
        result.append(f"   Created On: {project['created_dttm']}")
        result.append(f"   Description: {project['description']}")
        result.append(f"   Category: {project['categoryName']}\n")
    return "\n".join(result)

# === TOOL FUNCTIONS ===

def search_documents(query: str) -> str:
    """Search through ingested documents and get relevant information."""
    try:
        # Generate embedding for the query
        query_vector = embedding_model.embed_query(query)
        
        # Search in Qdrant
        search_result = qdrant_client.search(
            collection_name=QDRANT_COLLECTION_NAME,
            query_vector=query_vector,
            limit=5,
        )
        
        if not search_result:
            return "No relevant information found in the knowledge base."
        
        # Convert results to text content
        context_texts = []
        sources = []
        
        for hit in search_result:
            context_texts.append(hit.payload["text"])
            sources.append(hit.payload.get("source", "unknown"))
        
        # Create a simple prompt for answering based on context
        context = "\n\n".join(context_texts)
        unique_sources = list(set(sources))
        
        # Use the LLM directly to answer the message based on context
        prompt = f"""Based on the following context, answer the message: {query}

Context:
{context}

Please provide a comprehensive answer based on the context above. If the context doesn't contain enough information to answer the message, say so clearly."""

        response = llm.invoke(prompt)
        
        return f"{response.content}\n\nSources: {', '.join(unique_sources)}"
        
    except Exception as e:
        return f"Error searching documents: {str(e)}"

# Global variables to store auth context (for tool functions)
_current_user_id = None
_current_org_id = None
_current_auth_token = None

def get_user_projects(userLoginId: str) -> str:
    """Get list of projects for a user."""
    try:
        # Use global auth context if available
        if _current_auth_token and _current_user_id:
            user_id = _current_user_id
            org_id = _current_org_id or 1
            auth_token = _current_auth_token
        else:
            return "❌ Authentication token required. Please provide auth_token in your request."
        
        # Encode auth token using the actual user ID and provided token
        encoded_token = get_encoded_auth_token(user_id, auth_token)
        
        # Fetch projects
        data = fetch_user_projects(user_id, org_id, encoded_token)
        
        # Format and return the project list
        formatted = format_project_response(data)
        return formatted
        
    except ValueError:
        return "❌ Invalid userLoginId format. Please provide a valid number."
    except Exception as e:
        return f"❌ Error fetching projects: {str(e)}"

def pandas_data_analysis(query_with_filepath: str) -> str:
    """
    Tool for data analysis using PandasAI.
    Input format: 'filepath|query' where filepath is S3 path or ufuid, and query is the analysis question.
    """
    try:
        # Parse the input to extract filepath and query
        parts = query_with_filepath.split('|', 1)
        if len(parts) != 2:
            return "❌ Invalid input format. Please use: 'filepath|query' format."
        
        filepath, query = parts
        filepath = filepath.strip()
        query = query.strip()
        
        if not filepath or not query:
            return "❌ Both filepath and query are required."
        
        # Use the pandas_agent function
        result = pandas_agent(filepath, query)
        return result
        
    except Exception as e:
        return f"❌ Error in pandas data analysis: {str(e)}"

# === CREATE TOOLS ===

document_search_tool = Tool(
    name="document_search",
    description="""Use this tool to search through ingested documents and get relevant information from the knowledge base. 
    Perfect for answering messages about uploaded documents, manuals, or any content that was previously stored.
    Input should be a search query or message about the documents.""",
    func=search_documents
)

project_list_tool = Tool(
    name="get_user_projects",
    description="""Use this tool to get the list of projects for a user. 
    Perfect for when users ask about their projects, want to see available projects, or need project information.
    Input should be the userLoginId (e.g., '25').
    Note: This tool requires authentication context to be set.""",
    func=get_user_projects
)

pandas_analysis_tool = Tool(
    name="pandas_data_analysis",
    description="""Use this tool for data analysis on CSV/Parquet files using PandasAI.
    Perfect for when users ask questions about data analysis, statistics, insights, or want to query their datasets.
    Input format: 'filepath|query' where:
    - filepath: S3 file path (e.g., 'User-Uploaded-Raw-Files/Data2004csv1754926601269756') or ufuid (e.g., '123')
    - query: Natural language question about the data (e.g., 'What are the top 5 values?', 'Show me summary statistics')
    
    Examples:
    - 'User-Uploaded-Raw-Files/mydata.csv|What is this file about?'
    - '123|Show me the first 5 rows'
    - 'Modified-Files/processed_data|What are the most common values in column X?'
    """,
    func=pandas_data_analysis
)

# === AGENT SETUP ===

def create_agent_with_session_memory(session_id: str):
    """Create agent with session memory from Redis"""
    
    # Get memory from Redis
    memory_messages = get_session_memory(session_id)
    
    agent_prompt = ChatPromptTemplate.from_messages([
        ("system", """You are a helpful AI assistant with access to multiple tools and conversation memory:

1. **Document Search**: Search through uploaded documents and knowledge base
2. **Project Management**: Get list of user projects and project information  
3. **Data Analysis**: Analyze CSV/Parquet files using PandasAI for insights, statistics, and queries

Your capabilities:
- Answer messages about documents using the document search tool
- Help users find their projects and project information
- Perform data analysis on uploaded datasets using natural language queries
- Remember previous conversations in this session
- Provide general assistance and information
- Use appropriate tools based on user queries

Guidelines:
- Use the document search tool when users ask about specific content, documentation, or information that might be in uploaded files
- Use the project tool when users ask about projects, want to see their projects, or need project-related information
- Use the pandas analysis tool when users ask about data analysis, statistics, insights, or want to query datasets
- For pandas analysis, you need both a filepath (S3 path or ufuid) and a query - ask for missing information if needed
- Reference previous conversation context when relevant
- Be clear about which tool you're using and what information you're providing
- If you're unsure which tool to use, you can ask for clarification
- Provide helpful, accurate, and well-formatted responses

Remember: Always use the most appropriate tool based on the user's message and conversation context to provide the best possible answer."""),
        MessagesPlaceholder(variable_name="chat_history"),
        ("user", "{input}"),
        MessagesPlaceholder(variable_name="agent_scratchpad"),
    ])
    
    # Create memory object
    memory = ConversationBufferMemory(
        memory_key="chat_history",
        return_messages=True
    )
    
    # Load existing messages into memory
    for msg in memory_messages:
        if msg["role"] == "user":
            memory.chat_memory.add_user_message(msg["message"])
        else:
            memory.chat_memory.add_ai_message(msg["message"])
    
    # Create tools list
    tools = [document_search_tool, project_list_tool, pandas_analysis_tool]
    
    # Create the agent
    agent = create_openai_tools_agent(llm, tools, agent_prompt)
    
    # Create the agent executor with memory
    agent_executor = AgentExecutor(
        agent=agent, 
        tools=tools, 
        verbose=True,
        memory=memory
    )
    
    return agent_executor, memory

# === API ENDPOINTS ===

@app.post("/sessions", response_model=SessionResponse)
def create_new_session(userLoginId: int, orgId: int, auth_token: str):
    """Create a new chat session"""
    try:
        session_data = create_session(userLoginId, orgId, auth_token)
        return SessionResponse(**session_data)
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error creating session: {str(e)}")

@app.get("/sessions")
def list_user_sessions(userLoginId: int):
    """List all sessions for a user"""
    try:
        sessions = get_user_sessions(userLoginId)
        return {
            "userLoginId": userLoginId,
            "total_sessions": len(sessions),
            "sessions": sessions
        }
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error fetching sessions: {str(e)}")

@app.delete("/sessions/{session_id}")
def delete_user_session(session_id: str):
    """Delete/close a session"""
    try:
        # Verify session exists
        get_session(session_id)
        
        # Delete session
        delete_session(session_id)
        
        return {
            "message": f"Session {session_id} deleted successfully",
            "session_id": session_id
        }
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error deleting session: {str(e)}")

@app.post("/bot")
def chat_with_bot(query: BotQuery):
    """Main bot endpoint with session management"""
    try:
        # Set global auth context for tools
        global _current_user_id, _current_org_id, _current_auth_token
        _current_user_id = query.userLoginId
        _current_org_id = query.orgId
        _current_auth_token = query.auth_token
        
        session_id = query.session_id
        
        # Create new session if not provided
        if not session_id:
            session_data = create_session(query.userLoginId, query.orgId, query.auth_token)
            session_id = session_data["session_id"]
        else:
            # Verify existing session
            get_session(session_id)
        
        # Add user message to session
        user_message_id = add_message_to_session(session_id, "user", query.message)
        
        # Create agent with session memory
        agent_executor, memory = create_agent_with_session_memory(session_id)
        
        # Use the agent to process the query
        result = agent_executor.invoke({"input": query.message})
        
        # Add AI response to session
        ai_message_id = add_message_to_session(session_id, "assistant", result["output"])
        
        # Update session memory in Redis
        updated_messages = []
        for message in memory.chat_memory.messages:
            if hasattr(message, 'content'):
                role = "user" if message.__class__.__name__ == "HumanMessage" else "assistant"
                updated_messages.append({
                    "role": role,
                    "message": message.content,
                    "timestamp": datetime.now().isoformat()
                })
        
        update_session_memory(session_id, updated_messages)
        
        # Update session title after first user message
        update_session_title(session_id)
        
        # Clear auth context after use
        _current_user_id = None
        _current_org_id = None
        _current_auth_token = None
        
        return {
            "session_id": session_id,
            "user_message_id": user_message_id,
            "ai_message_id": ai_message_id,
            "message": query.message,
            "answer": result["output"],
            "userLoginId": query.userLoginId,
            "agent_used": True
        }
        
    except Exception as e:
        # Clear auth context on error
        _current_user_id = None
        _current_org_id = None
        _current_auth_token = None
        
        raise HTTPException(status_code=500, detail=f"Error processing chat: {str(e)}")

@app.get("/sessions/{session_id}/history", response_model=ChatHistoryResponse)
def get_session_history(session_id: str, n: int = QueryParam(50, description="Number of recent messages to return")):
    """Get chat history for a session"""
    try:
        # Verify session exists
        get_session(session_id)
        
        # Get chat history
        chat_data = redis_client.get(f"chat:{session_id}")
        if not chat_data:
            return ChatHistoryResponse(
                session_id=session_id,
                messages=[],
                total_messages=0
            )
        
        messages = json.loads(chat_data)
        
        # Get the last n messages (or all if less than n)
        recent_messages = messages[-n:] if len(messages) > n else messages
        
        # Convert to MessageResponse objects
        message_responses = [MessageResponse(**msg) for msg in recent_messages]
        
        return ChatHistoryResponse(
            session_id=session_id,
            messages=message_responses,
            total_messages=len(messages)
        )
        
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error fetching chat history: {str(e)}")

@app.post("/chat-documents")
def chat_documents_only(query: Query):
    """Direct document search without agent"""
    try:
        result = search_documents(query.message)
        return {
            "message": query.message,
            "answer": result,
            "tool_used": "document_search"
        }
    except Exception as e:
        return {
            "message": query.message,
            "answer": f"An error occurred: {str(e)}",
            "tool_used": "document_search"
        }

@app.post("/list-projects")
def list_projects(request: ProjectRequest):
    """Direct project listing without agent"""
    try:
        # Use the provided auth token and userLoginId
        encoded_token = get_encoded_auth_token(request.userLoginId, request.auth_token)

        # Fetch projects
        data = fetch_user_projects(request.userLoginId, request.orgId, encoded_token)
        
        # Format and return the project list
        formatted = format_project_response(data)
        return {
            "projects": formatted,
            "tool_used": "project_list"
        }
    except Exception as e:
        return {
            "error": f"An error occurred: {str(e)}",
            "tool_used": "project_list"
        }

@app.post("/chat-with-pandas-agent")
def chat_with_pandas_agent(request: PandasAgentQuery):
    """Direct pandas AI agent endpoint for data analysis"""
    try:
        result = pandas_agent(request.filepath, request.query)
        
        return {
            "filepath": request.filepath,
            "query": request.query,
            "answer": result,
            "tool_used": "pandas_agent",
            "timestamp": datetime.now().isoformat()
        }
        
    except Exception as e:
        error_msg = f"An error occurred: {str(e)}"
        return {
            "filepath": request.filepath,
            "query": request.query,
            "answer": error_msg,
            "tool_used": "pandas_agent",
            "error": True,
            "timestamp": datetime.now().isoformat()
        }

@app.put("/sessions/{session_id}/title")
def refresh_session_title(session_id: str):
    """Manually refresh/regenerate session title"""
    try:
        # Verify session exists
        session_data = get_session(session_id)
        
        # Generate new title
        new_title = generate_session_title(session_id)
        
        # Update session
        session_data["title"] = new_title
        redis_client.setex(
            f"session:{session_id}",
            86400,  # 24 hours
            json.dumps(session_data)
        )
        
        return {
            "session_id": session_id,
            "new_title": new_title,
            "message": "Session title updated successfully"
        }
        
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error updating session title: {str(e)}")

@app.get("/redis-info")
def redis_info():
    """Get Redis connection information"""
    try:
        info = redis_client.info()
        return {
            "redis_connected": True,
            "redis_version": info.get("redis_version"),
            "used_memory": info.get("used_memory_human"),
            "connected_clients": info.get("connected_clients"),
            "total_keys": redis_client.dbsize()
        }
    except Exception as e:
        return {
            "redis_connected": False,
            "error": str(e)
        }

@app.get("/health")
def health():
    try:
        redis_client.ping()
        redis_status = "connected"
    except:
        redis_status = "disconnected"
    
    return {
        "status": "ok",
        "tools": ["document_search", "project_list", "pandas_data_analysis"], 
        "agent": "active",
        "session_management": "enabled",
        "redis_status": redis_status,
        "pandas_ai": "enabled",
        "total_sessions": len(list(redis_client.scan_iter(match="session:*")))
    }