Spaces:
Sleeping
Sleeping
File size: 36,154 Bytes
0f87a6b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 |
from fastapi import FastAPI, HTTPException, Query as QueryParam from pydantic import BaseModel, Field from langchain_openai import ChatOpenAI, OpenAIEmbeddings from qdrant_client import QdrantClient from langchain.agents import Tool, AgentExecutor, create_openai_tools_agent from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder from langchain.memory import ConversationBufferMemory from typing import Optional, List, Dict, Any import os import warnings import base64 import requests from dotenv import load_dotenv from datetime import datetime import json import uuid import redis # Pandas AI imports import re import urllib.parse import pandas as pd import dask.dataframe as dd from math import ceil import psycopg2 from pandasai import SmartDataframe from pandasai.llm.openai import OpenAI as PandasOpenAI from fastapi import FastAPI, Request from fastapi.responses import JSONResponse import json # Import your existing S3 connection details from retrive_secrects import * # CONNECTIONS_HOST, etc. # Suppress warnings warnings.filterwarnings("ignore", message="Qdrant client version.*is incompatible.*") load_dotenv() app = FastAPI(title="AI Agent with Redis Session Management and Pandas AI") # Environment variables OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") QDRANT_COLLECTION_NAME = os.getenv("QDRANT_COLLECTION_NAME", "vatsav_test_1") QDRANT_HOST = os.getenv("QDRANT_HOST", "127.0.0.1") QDRANT_PORT = int(os.getenv("QDRANT_PORT", 6333)) # Redis Configuration REDIS_URL = os.getenv("REDIS_URL") REDIS_HOST = os.getenv("REDIS_HOST", "127.0.0.1") REDIS_PORT = int(os.getenv("REDIS_PORT", 6379)) REDIS_PASSWORD = os.getenv("REDIS_PASSWORD") # S3 Constants (from your original code) S3_Bucket_Name = 'ingenspark-user-files' S3_Raw_Files_Folder = 'User-Uploaded-Raw-Files' S3_Modified_Files_Folder = 'Modified-Files/' S3_Output_Files_Folder = 'Output-Files/' S3_Published_Results_Folder = 'Published-Results/' S3_Ingen_Customer_Output = 'Ingen-Customer/' Dominant_Segmentation_Output = 'Dominant-Segmentation/' Trend_Segmentation_Output = 'Trend-Segmentation/' Decile_Quartile_segmentation_Output = 'Decile-Quartile-Segmentation/' Combined_Segmentation_Output = 'Combine-Segmentation/' Custom_Segmentation_Output = 'Custom-Segmentation/' Customer_360_Output = 'Customer-360/' Merge_file_folder = S3_Modified_Files_Folder + 'IngenData-Merged-Tables/' S3_Dev_Doc_Images_Folder = 'Developers-Documentation-Images/' S3_Temporary_Files_Folder = S3_Raw_Files_Folder S3_App_Specific_Data = 'Application-Specific-Data/' S3_Transformation_Tables_Folder = 'Modified-Files/Modified-Tables/Transformation-Tables/' cloud_front_url = "https://files.dev.ingenspark.com/" # Initialize Redis client def get_redis_client(): """Initialize Redis client with fallback to local Redis""" try: if REDIS_URL: # Use deployed Redis URL redis_client = redis.from_url( REDIS_URL, decode_responses=True, socket_connect_timeout=5, socket_timeout=5 ) # Test connection redis_client.ping() print(f"β Connected to deployed Redis: {REDIS_URL}") return redis_client else: # Use local Redis redis_client = redis.StrictRedis( host=REDIS_HOST, port=REDIS_PORT, password=REDIS_PASSWORD, decode_responses=True, socket_connect_timeout=5, socket_timeout=5 ) # Test connection redis_client.ping() print(f"β Connected to local Redis: {REDIS_HOST}:{REDIS_PORT}") return redis_client except Exception as e: print(f"β Redis connection failed: {e}") raise HTTPException(status_code=500, detail=f"Redis connection failed: {str(e)}") # Initialize Redis client redis_client = get_redis_client() # Initialize models embedding_model = OpenAIEmbeddings( model="text-embedding-3-large", openai_api_key=OPENAI_API_KEY, ) qdrant_client = QdrantClient(host=QDRANT_HOST, port=QDRANT_PORT) llm = ChatOpenAI(model="gpt-4o", temperature=0, openai_api_key=OPENAI_API_KEY) # === PANDAS AI FUNCTIONS === def read_parquet_file_from_s3(ufuid=None, columns_list=None, records_count=None, file_location=''): """ Reads a Parquet file from S3 using Dask and returns it as a Pandas DataFrame. Parameters: ufuid (int): Optional user_file_upload_id to fetch S3 path from DB. columns_list (list/str): Columns to read. records_count (int): Not used currently. file_location (str): Direct file path in S3. Returns: pandas.DataFrame """ try: # Connect to PostgreSQL conn = psycopg2.connect( host=CONNECTIONS_HOST, database=CONNECTIONS_DB, user=CONNECTIONS_USER, password=CONNECTIONS_PASS ) cursor = conn.cursor() if ufuid is not None: query = """SELECT file_name, table_names FROM public.user_file_upload WHERE user_file_upload_id = %s""" cursor.execute(query, (ufuid,)) file = cursor.fetchone() if not file: raise ValueError(f"No file found for ufuid: {ufuid}") file_name, s3_file_path = file else: # Normalize input path file_location = re.sub(r'\.parquet(?!$)', '', file_location) s3_file_path = file_location if file_location.endswith('.parquet') else file_location + '.parquet' # Extract relative S3 path s3_file_path = urllib.parse.unquote(s3_file_path.split(f"{S3_Bucket_Name}/")[-1]) if not s3_file_path.endswith('.parquet'): s3_file_path += '.parquet' # Parse columns if given as comma-separated string if columns_list and not isinstance(columns_list, list): columns_list = [col.strip(' "\'') for col in columns_list.split(',')] print(f"\n{'!' * 100}\nReading from: s3://{S3_Bucket_Name}/{s3_file_path}\n") # Read using Dask ddf = dd.read_parquet( f"s3://{S3_Bucket_Name}/{s3_file_path}", engine="pyarrow", columns=columns_list, assume_missing=True ) ddf = ddf.repartition(npartitions=8) # Optimize for processing print("Reading Parquet file from S3 completed successfully.") # Close database connection cursor.close() conn.close() return ddf.compute() except Exception as e: print(f"β Error reading Parquet file: {e}") return pd.DataFrame() # Return empty DataFrame on error def pandas_agent(filepath: str, query: str) -> str: """ PandasAI agent that reads data from S3 and answers queries about the data. Parameters: filepath (str): S3 file path or ufuid query (str): Natural language query about the data Returns: str: Answer from PandasAI """ try: # Check if filepath is a number (ufuid) or a file path if filepath.isdigit(): # It's a ufuid data = read_parquet_file_from_s3(ufuid=int(filepath)) else: # It's a file path data = read_parquet_file_from_s3(file_location=filepath) if data.empty: return "β No data found or failed to load the file. Please check the file path or ufuid." # Initialize PandasAI LLM if not OPENAI_API_KEY: return "β OPENAI_API_KEY is not set in environment variables." pandas_llm = PandasOpenAI(api_token=OPENAI_API_KEY) # Create SmartDataframe sdf = SmartDataframe(data, config={"llm": pandas_llm}) # Ask the question print(f"π Processing query: {query}") result = sdf.chat(query) # Handle different types of results if isinstance(result, str): return f"π Analysis Result:\n{result}" elif isinstance(result, (pd.DataFrame, pd.Series)): return f"π Analysis Result:\n{result.to_string()}" else: return f"π Analysis Result:\n{str(result)}" except Exception as e: error_msg = f"β Error in pandas_agent: {str(e)}" print(error_msg) return error_msg # === INPUT SCHEMAS === class Query(BaseModel): message: str class ProjectRequest(BaseModel): userLoginId: int orgId: int auth_token: str class BotQuery(BaseModel): userLoginId: int orgId: int auth_token: str session_id: Optional[str] = None message: str class PandasAgentQuery(BaseModel): filepath: str = Field(..., description="S3 file path or ufuid") query: str = Field(..., description="Natural language query about the data") class SessionResponse(BaseModel): session_id: str userLoginId: int orgId: int created_at: str status: str title: Optional[str] = "New Chat" class MessageResponse(BaseModel): message_id: str session_id: str role: str # "user" or "assistant" message: str timestamp: str class ChatHistoryResponse(BaseModel): session_id: str messages: List[MessageResponse] total_messages: int # === SESSION MANAGEMENT FUNCTIONS === @app.middleware("http") async def add_success_flag(request: Request, call_next): response = await call_next(request) # Only modify JSON responses if "application/json" in response.headers.get("content-type", ""): try: body = b"".join([chunk async for chunk in response.body_iterator]) data = json.loads(body.decode()) # Add success flag data["success"] = 200 <= response.status_code < 300 # Build new JSONResponse (auto handles Content-Length) response = JSONResponse( content=data, status_code=response.status_code, headers={k: v for k, v in response.headers.items() if k.lower() != "content-length"}, ) except Exception: # fallback if response is not JSON parseable pass return response def create_session(userLoginId: int, orgId: int, auth_token: str) -> dict: """Create a new chat session""" session_id = str(uuid.uuid4()) session_data = { "session_id": session_id, "userLoginId": userLoginId, "orgId": orgId, "auth_token": auth_token, "created_at": datetime.now().isoformat(), "status": "active", "title": "New Chat" # Default title, will be updated after first message } # Store session in Redis with 24 hour TTL redis_client.setex( f"session:{session_id}", 86400, # 24 hours json.dumps(session_data) ) # Initialize empty chat history redis_client.setex( f"chat:{session_id}", 86400, # 24 hours json.dumps([]) ) # Initialize conversation memory redis_client.setex( f"memory:{session_id}", 86400, # 24 hours json.dumps([]) ) return session_data def get_session(session_id: str) -> dict: """Get session data from Redis""" session_data = redis_client.get(f"session:{session_id}") if not session_data: raise HTTPException(status_code=404, detail="Session not found or expired") return json.loads(session_data) def add_message_to_session(session_id: str, role: str, message: str) -> str: """Add message to session chat history""" message_id = str(uuid.uuid4()) message_data = { "message_id": message_id, "session_id": session_id, "role": role, "message": message, "timestamp": datetime.now().isoformat() } # Get current chat history chat_history = redis_client.get(f"chat:{session_id}") if chat_history: messages = json.loads(chat_history) else: messages = [] # Add new message messages.append(message_data) # Update chat history in Redis with extended TTL redis_client.setex( f"chat:{session_id}", 86400, # 24 hours json.dumps(messages) ) return message_id def get_session_memory(session_id: str) -> List[Dict]: """Get conversation memory for session""" memory_data = redis_client.get(f"memory:{session_id}") if memory_data: return json.loads(memory_data) return [] def update_session_memory(session_id: str, messages: List[Dict]): """Update conversation memory for session""" redis_client.setex( f"memory:{session_id}", 86400, # 24 hours json.dumps(messages) ) def update_session_title(session_id: str): """Update session title after first message""" try: # Get session data session_data = redis_client.get(f"session:{session_id}") if not session_data: return session = json.loads(session_data) # Only update if current title is "New Chat" if session.get("title", "New Chat") == "New Chat": new_title = generate_session_title(session_id) session["title"] = new_title # Update session in Redis redis_client.setex( f"session:{session_id}", 86400, # 24 hours json.dumps(session) ) except Exception as e: print(f"Error updating session title: {e}") pass # Don't fail the request if title update fails def generate_session_title(session_id: str) -> str: """Generate a title for the session based on chat history""" try: # Get chat history chat_data = redis_client.get(f"chat:{session_id}") if not chat_data: return "New Chat" messages = json.loads(chat_data) if not messages: return "New Chat" # Get first user message for title generation first_user_message = None for msg in messages: if msg["role"] == "user": first_user_message = msg["message"] break if not first_user_message: return "New Chat" # Generate title using LLM title_prompt = f"""Generate a short, descriptive title (maximum 6 words) for a chat conversation that starts with this message: "{first_user_message[:200]}" Return only the title, no quotes or additional text. The title should capture the main topic or intent of the conversation.""" try: response = llm.invoke(title_prompt) title = response.content.strip() # Clean and limit title title = title.replace('"', '').replace("'", "") if len(title) > 50: title = title[:47] + "..." return title if title else "New Chat" except Exception as e: print(f"Error generating title: {e}") # Fallback: use first few words of the message words = first_user_message.split()[:4] return " ".join(words) + ("..." if len(words) >= 4 else "") except Exception as e: print(f"Error in generate_session_title: {e}") return "New Chat" def get_user_sessions(userLoginId: int) -> List[dict]: """Get all sessions for a user with generated titles""" sessions = [] # Scan for all session keys for key in redis_client.scan_iter(match="session:*"): session_data = redis_client.get(key) if session_data: session = json.loads(session_data) if session["userLoginId"] == userLoginId: # Generate title based on chat history session["title"] = generate_session_title(session["session_id"]) sessions.append(session) # Sort sessions by created_at (most recent first) sessions.sort(key=lambda x: x["created_at"], reverse=True) return sessions def delete_session(session_id: str): """Delete session and associated data""" # Delete session data redis_client.delete(f"session:{session_id}") # Delete chat history redis_client.delete(f"chat:{session_id}") # Delete memory redis_client.delete(f"memory:{session_id}") # === UTILITY FUNCTIONS === def get_encoded_auth_token(user: int, token: str) -> str: auth_string = f"{user}:{token}" return base64.b64encode(auth_string.encode("utf-8")).decode("utf-8") def fetch_user_projects(userLoginId: int, orgId: int, auth_token: str): url = "https://japidemo.dev.ingenspark.com/fetchUserProjects" payload = { "userLoginId": userLoginId, "orgId": orgId } headers = { 'accept': 'application/json, text/plain, */*', 'authorization': f'Basic {auth_token}', 'content-type': 'application/json; charset=UTF-8' } try: response = requests.post(url, headers=headers, json=payload) response.raise_for_status() return response.json() except requests.exceptions.RequestException as e: raise HTTPException(status_code=response.status_code if 'response' in locals() else 500, detail=str(e)) def format_project_response(data: dict) -> str: my_projects = data.get("data", {}).get("Myprojects", []) other_projects = data.get("data", {}).get("Otherprojects", []) all_projects = [] for project in my_projects: all_projects.append({ "type": "Your Project", "projectNm": project["projectNm"], "projectId": project["projectId"], "created_dttm": project["created_dttm"].split('.')[0], "description": project["description"], "categoryName": project["categoryName"] }) for project in other_projects: all_projects.append({ "type": "Other Project", "projectNm": project["projectNm"], "projectId": project["projectId"], "created_dttm": project["created_dttm"].split('.')[0], "description": project["description"], "categoryName": project["categoryName"] }) if not all_projects: return "β No projects found." # Build the formatted string result = [f"β You have access to {len(all_projects)} project(s):\n"] for i, project in enumerate(all_projects, 1): result.append(f"{i}. Project Name: {project['projectNm']} ({project['type']})") result.append(f" Project ID: {project['projectId']}") result.append(f" Created On: {project['created_dttm']}") result.append(f" Description: {project['description']}") result.append(f" Category: {project['categoryName']}\n") return "\n".join(result) # === TOOL FUNCTIONS === def search_documents(query: str) -> str: """Search through ingested documents and get relevant information.""" try: # Generate embedding for the query query_vector = embedding_model.embed_query(query) # Search in Qdrant search_result = qdrant_client.search( collection_name=QDRANT_COLLECTION_NAME, query_vector=query_vector, limit=5, ) if not search_result: return "No relevant information found in the knowledge base." # Convert results to text content context_texts = [] sources = [] for hit in search_result: context_texts.append(hit.payload["text"]) sources.append(hit.payload.get("source", "unknown")) # Create a simple prompt for answering based on context context = "\n\n".join(context_texts) unique_sources = list(set(sources)) # Use the LLM directly to answer the message based on context prompt = f"""Based on the following context, answer the message: {query} Context: {context} Please provide a comprehensive answer based on the context above. If the context doesn't contain enough information to answer the message, say so clearly.""" response = llm.invoke(prompt) return f"{response.content}\n\nSources: {', '.join(unique_sources)}" except Exception as e: return f"Error searching documents: {str(e)}" # Global variables to store auth context (for tool functions) _current_user_id = None _current_org_id = None _current_auth_token = None def get_user_projects(userLoginId: str) -> str: """Get list of projects for a user.""" try: # Use global auth context if available if _current_auth_token and _current_user_id: user_id = _current_user_id org_id = _current_org_id or 1 auth_token = _current_auth_token else: return "β Authentication token required. Please provide auth_token in your request." # Encode auth token using the actual user ID and provided token encoded_token = get_encoded_auth_token(user_id, auth_token) # Fetch projects data = fetch_user_projects(user_id, org_id, encoded_token) # Format and return the project list formatted = format_project_response(data) return formatted except ValueError: return "β Invalid userLoginId format. Please provide a valid number." except Exception as e: return f"β Error fetching projects: {str(e)}" def pandas_data_analysis(query_with_filepath: str) -> str: """ Tool for data analysis using PandasAI. Input format: 'filepath|query' where filepath is S3 path or ufuid, and query is the analysis question. """ try: # Parse the input to extract filepath and query parts = query_with_filepath.split('|', 1) if len(parts) != 2: return "β Invalid input format. Please use: 'filepath|query' format." filepath, query = parts filepath = filepath.strip() query = query.strip() if not filepath or not query: return "β Both filepath and query are required." # Use the pandas_agent function result = pandas_agent(filepath, query) return result except Exception as e: return f"β Error in pandas data analysis: {str(e)}" # === CREATE TOOLS === document_search_tool = Tool( name="document_search", description="""Use this tool to search through ingested documents and get relevant information from the knowledge base. Perfect for answering messages about uploaded documents, manuals, or any content that was previously stored. Input should be a search query or message about the documents.""", func=search_documents ) project_list_tool = Tool( name="get_user_projects", description="""Use this tool to get the list of projects for a user. Perfect for when users ask about their projects, want to see available projects, or need project information. Input should be the userLoginId (e.g., '25'). Note: This tool requires authentication context to be set.""", func=get_user_projects ) pandas_analysis_tool = Tool( name="pandas_data_analysis", description="""Use this tool for data analysis on CSV/Parquet files using PandasAI. Perfect for when users ask questions about data analysis, statistics, insights, or want to query their datasets. Input format: 'filepath|query' where: - filepath: S3 file path (e.g., 'User-Uploaded-Raw-Files/Data2004csv1754926601269756') or ufuid (e.g., '123') - query: Natural language question about the data (e.g., 'What are the top 5 values?', 'Show me summary statistics') Examples: - 'User-Uploaded-Raw-Files/mydata.csv|What is this file about?' - '123|Show me the first 5 rows' - 'Modified-Files/processed_data|What are the most common values in column X?' """, func=pandas_data_analysis ) # === AGENT SETUP === def create_agent_with_session_memory(session_id: str): """Create agent with session memory from Redis""" # Get memory from Redis memory_messages = get_session_memory(session_id) agent_prompt = ChatPromptTemplate.from_messages([ ("system", """You are a helpful AI assistant with access to multiple tools and conversation memory: 1. **Document Search**: Search through uploaded documents and knowledge base 2. **Project Management**: Get list of user projects and project information 3. **Data Analysis**: Analyze CSV/Parquet files using PandasAI for insights, statistics, and queries Your capabilities: - Answer messages about documents using the document search tool - Help users find their projects and project information - Perform data analysis on uploaded datasets using natural language queries - Remember previous conversations in this session - Provide general assistance and information - Use appropriate tools based on user queries Guidelines: - Use the document search tool when users ask about specific content, documentation, or information that might be in uploaded files - Use the project tool when users ask about projects, want to see their projects, or need project-related information - Use the pandas analysis tool when users ask about data analysis, statistics, insights, or want to query datasets - For pandas analysis, you need both a filepath (S3 path or ufuid) and a query - ask for missing information if needed - Reference previous conversation context when relevant - Be clear about which tool you're using and what information you're providing - If you're unsure which tool to use, you can ask for clarification - Provide helpful, accurate, and well-formatted responses Remember: Always use the most appropriate tool based on the user's message and conversation context to provide the best possible answer."""), MessagesPlaceholder(variable_name="chat_history"), ("user", "{input}"), MessagesPlaceholder(variable_name="agent_scratchpad"), ]) # Create memory object memory = ConversationBufferMemory( memory_key="chat_history", return_messages=True ) # Load existing messages into memory for msg in memory_messages: if msg["role"] == "user": memory.chat_memory.add_user_message(msg["message"]) else: memory.chat_memory.add_ai_message(msg["message"]) # Create tools list tools = [document_search_tool, project_list_tool, pandas_analysis_tool] # Create the agent agent = create_openai_tools_agent(llm, tools, agent_prompt) # Create the agent executor with memory agent_executor = AgentExecutor( agent=agent, tools=tools, verbose=True, memory=memory ) return agent_executor, memory # === API ENDPOINTS === @app.post("/sessions", response_model=SessionResponse) def create_new_session(userLoginId: int, orgId: int, auth_token: str): """Create a new chat session""" try: session_data = create_session(userLoginId, orgId, auth_token) return SessionResponse(**session_data) except Exception as e: raise HTTPException(status_code=500, detail=f"Error creating session: {str(e)}") @app.get("/sessions") def list_user_sessions(userLoginId: int): """List all sessions for a user""" try: sessions = get_user_sessions(userLoginId) return { "userLoginId": userLoginId, "total_sessions": len(sessions), "sessions": sessions } except Exception as e: raise HTTPException(status_code=500, detail=f"Error fetching sessions: {str(e)}") @app.delete("/sessions/{session_id}") def delete_user_session(session_id: str): """Delete/close a session""" try: # Verify session exists get_session(session_id) # Delete session delete_session(session_id) return { "message": f"Session {session_id} deleted successfully", "session_id": session_id } except Exception as e: raise HTTPException(status_code=500, detail=f"Error deleting session: {str(e)}") @app.post("/bot") def chat_with_bot(query: BotQuery): """Main bot endpoint with session management""" try: # Set global auth context for tools global _current_user_id, _current_org_id, _current_auth_token _current_user_id = query.userLoginId _current_org_id = query.orgId _current_auth_token = query.auth_token session_id = query.session_id # Create new session if not provided if not session_id: session_data = create_session(query.userLoginId, query.orgId, query.auth_token) session_id = session_data["session_id"] else: # Verify existing session get_session(session_id) # Add user message to session user_message_id = add_message_to_session(session_id, "user", query.message) # Create agent with session memory agent_executor, memory = create_agent_with_session_memory(session_id) # Use the agent to process the query result = agent_executor.invoke({"input": query.message}) # Add AI response to session ai_message_id = add_message_to_session(session_id, "assistant", result["output"]) # Update session memory in Redis updated_messages = [] for message in memory.chat_memory.messages: if hasattr(message, 'content'): role = "user" if message.__class__.__name__ == "HumanMessage" else "assistant" updated_messages.append({ "role": role, "message": message.content, "timestamp": datetime.now().isoformat() }) update_session_memory(session_id, updated_messages) # Update session title after first user message update_session_title(session_id) # Clear auth context after use _current_user_id = None _current_org_id = None _current_auth_token = None return { "session_id": session_id, "user_message_id": user_message_id, "ai_message_id": ai_message_id, "message": query.message, "answer": result["output"], "userLoginId": query.userLoginId, "agent_used": True } except Exception as e: # Clear auth context on error _current_user_id = None _current_org_id = None _current_auth_token = None raise HTTPException(status_code=500, detail=f"Error processing chat: {str(e)}") @app.get("/sessions/{session_id}/history", response_model=ChatHistoryResponse) def get_session_history(session_id: str, n: int = QueryParam(50, description="Number of recent messages to return")): """Get chat history for a session""" try: # Verify session exists get_session(session_id) # Get chat history chat_data = redis_client.get(f"chat:{session_id}") if not chat_data: return ChatHistoryResponse( session_id=session_id, messages=[], total_messages=0 ) messages = json.loads(chat_data) # Get the last n messages (or all if less than n) recent_messages = messages[-n:] if len(messages) > n else messages # Convert to MessageResponse objects message_responses = [MessageResponse(**msg) for msg in recent_messages] return ChatHistoryResponse( session_id=session_id, messages=message_responses, total_messages=len(messages) ) except Exception as e: raise HTTPException(status_code=500, detail=f"Error fetching chat history: {str(e)}") @app.post("/chat-documents") def chat_documents_only(query: Query): """Direct document search without agent""" try: result = search_documents(query.message) return { "message": query.message, "answer": result, "tool_used": "document_search" } except Exception as e: return { "message": query.message, "answer": f"An error occurred: {str(e)}", "tool_used": "document_search" } @app.post("/list-projects") def list_projects(request: ProjectRequest): """Direct project listing without agent""" try: # Use the provided auth token and userLoginId encoded_token = get_encoded_auth_token(request.userLoginId, request.auth_token) # Fetch projects data = fetch_user_projects(request.userLoginId, request.orgId, encoded_token) # Format and return the project list formatted = format_project_response(data) return { "projects": formatted, "tool_used": "project_list" } except Exception as e: return { "error": f"An error occurred: {str(e)}", "tool_used": "project_list" } @app.post("/chat-with-pandas-agent") def chat_with_pandas_agent(request: PandasAgentQuery): """Direct pandas AI agent endpoint for data analysis""" try: result = pandas_agent(request.filepath, request.query) return { "filepath": request.filepath, "query": request.query, "answer": result, "tool_used": "pandas_agent", "timestamp": datetime.now().isoformat() } except Exception as e: error_msg = f"An error occurred: {str(e)}" return { "filepath": request.filepath, "query": request.query, "answer": error_msg, "tool_used": "pandas_agent", "error": True, "timestamp": datetime.now().isoformat() } @app.put("/sessions/{session_id}/title") def refresh_session_title(session_id: str): """Manually refresh/regenerate session title""" try: # Verify session exists session_data = get_session(session_id) # Generate new title new_title = generate_session_title(session_id) # Update session session_data["title"] = new_title redis_client.setex( f"session:{session_id}", 86400, # 24 hours json.dumps(session_data) ) return { "session_id": session_id, "new_title": new_title, "message": "Session title updated successfully" } except Exception as e: raise HTTPException(status_code=500, detail=f"Error updating session title: {str(e)}") @app.get("/redis-info") def redis_info(): """Get Redis connection information""" try: info = redis_client.info() return { "redis_connected": True, "redis_version": info.get("redis_version"), "used_memory": info.get("used_memory_human"), "connected_clients": info.get("connected_clients"), "total_keys": redis_client.dbsize() } except Exception as e: return { "redis_connected": False, "error": str(e) } @app.get("/health") def health(): try: redis_client.ping() redis_status = "connected" except: redis_status = "disconnected" return { "status": "ok", "tools": ["document_search", "project_list", "pandas_data_analysis"], "agent": "active", "session_management": "enabled", "redis_status": redis_status, "pandas_ai": "enabled", "total_sessions": len(list(redis_client.scan_iter(match="session:*"))) } |