Spaces:
Running
Running
File size: 17,814 Bytes
b4a2550 113ecac b4a2550 92b3385 113ecac b4a2550 113ecac b4a2550 113ecac b4a2550 113ecac b4a2550 9282f67 b4a2550 113ecac b4a2550 9282f67 113ecac b4a2550 113ecac b4a2550 113ecac 92b3385 b4a2550 9282f67 b4a2550 9282f67 b4a2550 9282f67 b4a2550 113ecac b4a2550 113ecac b4a2550 113ecac b4a2550 113ecac b4a2550 9282f67 b4a2550 113ecac b4a2550 113ecac b4a2550 9282f67 b4a2550 113ecac b4a2550 113ecac b4a2550 113ecac b4a2550 92b3385 113ecac 92b3385 113ecac 92b3385 113ecac b4a2550 9282f67 b4a2550 113ecac b4a2550 113ecac b4a2550 113ecac b4a2550 9282f67 113ecac b4a2550 113ecac b4a2550 9282f67 b4a2550 9282f67 b4a2550 9282f67 b4a2550 113ecac b4a2550 113ecac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 |
from fastapi import FastAPI, HTTPException, Query as QueryParam from pydantic import BaseModel, Field from langchain_openai import ChatOpenAI, OpenAIEmbeddings from qdrant_client import QdrantClient from langchain.agents import Tool, AgentExecutor, create_openai_tools_agent from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder from langchain.tools import BaseTool from langchain.memory import ConversationBufferMemory from langchain_core.messages import HumanMessage, AIMessage from typing import Type, Optional, List, Dict, Any import os import warnings import base64 import requests from dotenv import load_dotenv from datetime import datetime import json # Suppress warnings warnings.filterwarnings("ignore", message="Qdrant client version.*is incompatible.*") load_dotenv() app = FastAPI(title="AI Agent with Document Search, Project Management and Session Memory") # Environment variables OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") QDRANT_COLLECTION_NAME = os.getenv("QDRANT_COLLECTION_NAME", "vatsav_test_1") QDRANT_HOST = os.getenv("QDRANT_HOST", "127.0.0.1") QDRANT_PORT = int(os.getenv("QDRANT_PORT", 6333)) # Initialize models embedding_model = OpenAIEmbeddings( model="text-embedding-3-large", openai_api_key=OPENAI_API_KEY, ) qdrant_client = QdrantClient(host=QDRANT_HOST, port=QDRANT_PORT) llm = ChatOpenAI(model="gpt-4o", temperature=0, openai_api_key=OPENAI_API_KEY) # === USER SESSION MANAGEMENT === # In-memory storage for user sessions (in production, use Redis or database) user_memories: Dict[int, ConversationBufferMemory] = {} user_chat_history: Dict[int, List[Dict]] = {} def get_or_create_user_memory(user_login_id: int) -> ConversationBufferMemory: """Get or create a conversation memory for a user""" if user_login_id not in user_memories: user_memories[user_login_id] = ConversationBufferMemory( memory_key="chat_history", return_messages=True ) user_chat_history[user_login_id] = [] return user_memories[user_login_id] def add_to_chat_history(user_login_id: int, user_message: str, ai_response: str): """Add messages to user chat history""" if user_login_id not in user_chat_history: user_chat_history[user_login_id] = [] timestamp = datetime.now().isoformat() # Add user message user_chat_history[user_login_id].append({ "id": len(user_chat_history[user_login_id]) + 1, "type": "user", "message": user_message, "timestamp": timestamp }) # Add AI response user_chat_history[user_login_id].append({ "id": len(user_chat_history[user_login_id]) + 1, "type": "assistant", "message": ai_response, "timestamp": timestamp }) # === INPUT SCHEMAS === class Query(BaseModel): message: str class ProjectRequest(BaseModel): userLoginId: int orgId: int auth_token: str class AgentQuery(BaseModel): message: str userLoginId: int # Now required for user-based memory orgId: Optional[int] = None auth_token: Optional[str] = None class ChatHistoryResponse(BaseModel): user_login_id: int total_messages: int messages: List[Dict[str, Any]] # === UTILITY FUNCTIONS === def get_encoded_auth_token(user: int, token: str) -> str: auth_string = f"{user}:{token}" return base64.b64encode(auth_string.encode("utf-8")).decode("utf-8") def fetch_user_projects(userLoginId: int, orgId: int, auth_token: str): url = "https://japidemo.dev.ingenspark.com/fetchUserProjects" payload = { "userLoginId": userLoginId, "orgId": orgId } headers = { 'accept': 'application/json, text/plain, */*', 'authorization': f'Basic {auth_token}', 'content-type': 'application/json; charset=UTF-8' } print("auth_token", auth_token) try: response = requests.post(url, headers=headers, json=payload) response.raise_for_status() return response.json() except requests.exceptions.RequestException as e: raise HTTPException(status_code=response.status_code if 'response' in locals() else 500, detail=str(e)) def format_project_response(data: dict) -> str: my_projects = data.get("data", {}).get("Myprojects", []) other_projects = data.get("data", {}).get("Otherprojects", []) all_projects = [] for project in my_projects: all_projects.append({ "type": "Your Project", "projectNm": project["projectNm"], "projectId": project["projectId"], "created_dttm": project["created_dttm"].split('.')[0], "description": project["description"], "categoryName": project["categoryName"] }) for project in other_projects: all_projects.append({ "type": "Other Project", "projectNm": project["projectNm"], "projectId": project["projectId"], "created_dttm": project["created_dttm"].split('.')[0], "description": project["description"], "categoryName": project["categoryName"] }) if not all_projects: return "β No projects found." # Build the formatted string result = [f"β You have access to {len(all_projects)} project(s):\n"] for i, project in enumerate(all_projects, 1): result.append(f"{i}. Project Name: {project['projectNm']} ({project['type']})") result.append(f" Project ID: {project['projectId']}") result.append(f" Created On: {project['created_dttm']}") result.append(f" Description: {project['description']}") result.append(f" Category: {project['categoryName']}\n") return "\n".join(result) # === TOOL FUNCTIONS === def search_documents(query: str) -> str: """Search through ingested documents and get relevant information. Args: query: The search query or message about the documents Returns: Relevant information from the documents with sources """ try: # Generate embedding for the query query_vector = embedding_model.embed_query(query) # Search in Qdrant search_result = qdrant_client.search( collection_name=QDRANT_COLLECTION_NAME, query_vector=query_vector, limit=5, ) if not search_result: return "No relevant information found in the knowledge base." # Convert results to text content context_texts = [] sources = [] for hit in search_result: context_texts.append(hit.payload["text"]) sources.append(hit.payload.get("source", "unknown")) # Create a simple prompt for answering based on context context = "\n\n".join(context_texts) unique_sources = list(set(sources)) # Use the LLM directly to answer the message based on context prompt = f"""Based on the following context, answer the message: {query} Context: {context} Please provide a comprehensive answer based on the context above. If the context doesn't contain enough information to answer the message, say so clearly.""" response = llm.invoke(prompt) return f"{response.content}\n\nSources: {', '.join(unique_sources)}" except Exception as e: return f"Error searching documents: {str(e)}" # Global variables to store auth context (for tool functions) _current_user_id = None _current_org_id = None _current_auth_token = None def get_user_projects(userLoginId: str) -> str: """Get list of projects for a user. Requires userLoginId as input. Args: userLoginId: The user login ID to fetch projects for (format: 'userLoginId:orgId' or just 'userLoginId') Returns: Formatted list of user projects """ try: # Use global auth context if available if _current_auth_token and _current_user_id: user_id = _current_user_id org_id = _current_org_id or 1 auth_token = _current_auth_token else: # Parse userLoginId (can be "25" or "25:1" format) - fallback if ":" in userLoginId: user_id, org_id = userLoginId.split(":", 1) user_id = int(user_id) org_id = int(org_id) else: user_id = int(userLoginId) org_id = 1 # Default org ID return "β Authentication token required. Please provide auth_token in your request." # Encode auth token using the actual user ID and provided token encoded_token = get_encoded_auth_token(user_id, auth_token) # Fetch projects data = fetch_user_projects(user_id, org_id, encoded_token) print("Fetched data:", data) # Debugging line # Format and return the project list formatted = format_project_response(data) return formatted except ValueError: return "β Invalid userLoginId format. Please provide a valid number or 'userLoginId:orgId' format." except Exception as e: return f"β Error fetching projects: {str(e)}" # === CREATE TOOLS === document_search_tool = Tool( name="document_search", description="""Use this tool to search through ingested documents and get relevant information from the knowledge base. Perfect for answering messages about uploaded documents, manuals, or any content that was previously stored. Input should be a search query or message about the documents.""", func=search_documents ) project_list_tool = Tool( name="get_user_projects", description="""Use this tool to get the list of projects for a user. Perfect for when users ask about their projects, want to see available projects, or need project information. Input should be the userLoginId (e.g., '25') or in format 'userLoginId:orgId' (e.g., '25:1'). Note: This tool requires authentication context to be set.""", func=get_user_projects ) # === AGENT SETUP === def create_agent_with_memory(memory: ConversationBufferMemory): """Create agent with session memory""" agent_prompt = ChatPromptTemplate.from_messages([ ("system", """You are a helpful AI assistant with access to multiple tools and conversation memory: 1. **Document Search**: Search through uploaded documents and knowledge base 2. **Project Management**: Get list of user projects and project information Your capabilities: - Answer messages about documents using the document search tool - Help users find their projects and project information - Remember previous conversations in this session - Provide general assistance and information - Use appropriate tools based on user queries Guidelines: - Use the document search tool when users ask about specific content, documentation, or information that might be in uploaded files - Use the project tool when users ask about projects, want to see their projects, or need project-related information - Reference previous conversation context when relevant - If users mention a userLoginId or ask about projects, use the project tool - Be clear about which tool you're using and what information you're providing - If you're unsure which tool to use, you can ask for clarification - Provide helpful, accurate, and well-formatted responses Remember: Always use the most appropriate tool based on the user's message and conversation context to provide the best possible answer."""), MessagesPlaceholder(variable_name="chat_history"), ("user", "{input}"), MessagesPlaceholder(variable_name="agent_scratchpad"), ]) # Create tools list tools = [document_search_tool, project_list_tool] # Create the agent agent = create_openai_tools_agent(llm, tools, agent_prompt) # Create the agent executor with memory agent_executor = AgentExecutor( agent=agent, tools=tools, verbose=True, memory=memory ) return agent_executor # === API ENDPOINTS === @app.post("/bot") def chat_with_agent(query: AgentQuery): """Main agent endpoint with user-based memory - handles both document search and project queries intelligently""" try: # Set global auth context for tools global _current_user_id, _current_org_id, _current_auth_token _current_user_id = query.userLoginId _current_org_id = query.orgId _current_auth_token = query.auth_token # Get or create user memory memory = get_or_create_user_memory(query.userLoginId) # Create agent with memory agent_executor = create_agent_with_memory(memory) # Prepare the input for the agent agent_input = query.message # If user provided credentials, add them to the context if query.userLoginId is not None: agent_input += f" [UserLoginId: {query.userLoginId}" if query.orgId is not None: agent_input += f", OrgId: {query.orgId}" agent_input += "]" # Use the agent to process the query result = agent_executor.invoke({"input": agent_input}) # Add to chat history add_to_chat_history(query.userLoginId, query.message, result["output"]) # Clear auth context after use _current_user_id = None _current_org_id = None _current_auth_token = None return { "message": query.message, "answer": result["output"], "user_login_id": query.userLoginId, "agent_used": True } except Exception as e: # Clear auth context on error _current_user_id = None _current_org_id = None _current_auth_token = None return { "message": query.message, "answer": f"An error occurred: {str(e)}", "user_login_id": query.userLoginId, "agent_used": True } @app.get("/get-chat-history/{user_login_id}") def get_chat_history( user_login_id: int, n: int = QueryParam(10, description="Number of recent messages to return") ) -> ChatHistoryResponse: """Get chat history for a user""" try: if user_login_id not in user_chat_history: return ChatHistoryResponse( user_login_id=user_login_id, total_messages=0, messages=[] ) history = user_chat_history[user_login_id] # Get the last n messages (or all if less than n) recent_messages = history[-n:] if len(history) > n else history return ChatHistoryResponse( user_login_id=user_login_id, total_messages=len(history), messages=recent_messages ) except Exception as e: raise HTTPException(status_code=500, detail=f"Error fetching chat history: {str(e)}") @app.delete("/clear-user-history/{user_login_id}") def clear_user_history(user_login_id: int): """Clear user memory and chat history""" try: if user_login_id in user_memories: del user_memories[user_login_id] if user_login_id in user_chat_history: del user_chat_history[user_login_id] return { "message": f"User {user_login_id} chat history cleared successfully", "user_login_id": user_login_id } except Exception as e: raise HTTPException(status_code=500, detail=f"Error clearing user history: {str(e)}") @app.get("/active-users") def get_active_users(): """Get list of active users with chat history""" return { "active_users": list(user_memories.keys()), "total_active_users": len(user_memories) } @app.post("/chat-documents") def chat_documents_only(query: Query): """Direct document search without agent""" try: result = search_documents(query.message) return { "message": query.message, "answer": result, "tool_used": "document_search" } except Exception as e: return { "message": query.message, "answer": f"An error occurred: {str(e)}", "tool_used": "document_search" } @app.post("/list-projects") def list_projects(request: ProjectRequest): """Direct project listing without agent""" try: # Use the provided auth token and userLoginId encoded_token = get_encoded_auth_token(request.userLoginId, request.auth_token) print("Encoded token:", encoded_token) # Fetch projects data = fetch_user_projects(request.userLoginId, request.orgId, encoded_token) # Format and return the project list formatted = format_project_response(data) return { "projects": formatted, "tool_used": "project_list" } except Exception as e: return { "error": f"An error occurred: {str(e)}", "tool_used": "project_list" } @app.get("/health") def health(): return { "status": "ok", "tools": ["document_search", "project_list"], "agent": "active", "user_memory_management": "enabled", "active_users": len(user_memories) } if __name__ == "__main__": import uvicorn try: uvicorn.run(app, host="0.0.0.0", port=8000) except KeyboardInterrupt: print("\nπ Server stopped gracefully") except Exception as e: print(f"β Server error: {e}") |