Spaces:
Running
Running
# from fastapi import FastAPI, HTTPException, Query as QueryParam | |
# from pydantic import BaseModel, Field | |
# from langchain_openai import ChatOpenAI, OpenAIEmbeddings | |
# from qdrant_client import QdrantClient | |
# from langchain.agents import Tool, AgentExecutor, create_openai_tools_agent | |
# from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder | |
# from langchain.memory import ConversationBufferMemory | |
# from typing import Optional, List, Dict, Any | |
# import os | |
# import warnings | |
# import base64 | |
# import requests | |
# from dotenv import load_dotenv | |
# from datetime import datetime | |
# import json | |
# import uuid | |
# import redis | |
# # Suppress warnings | |
# warnings.filterwarnings("ignore", message="Qdrant client version.*is incompatible.*") | |
# load_dotenv() | |
# app = FastAPI(title="AI Agent with Redis Session Management") | |
# # Environment variables | |
# OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") | |
# QDRANT_COLLECTION_NAME = os.getenv("QDRANT_COLLECTION_NAME", "vatsav_test_1") | |
# QDRANT_HOST = os.getenv("QDRANT_HOST", "127.0.0.1") | |
# QDRANT_PORT = int(os.getenv("QDRANT_PORT", 6333)) | |
# # Redis Configuration | |
# REDIS_URL = os.getenv("REDIS_URL") | |
# REDIS_HOST = os.getenv("REDIS_HOST", "127.0.0.1") | |
# REDIS_PORT = int(os.getenv("REDIS_PORT", 6379)) | |
# REDIS_PASSWORD = os.getenv("REDIS_PASSWORD") | |
# # Initialize Redis client | |
# def get_redis_client(): | |
# """Initialize Redis client with fallback to local Redis""" | |
# try: | |
# if REDIS_URL: | |
# # Use deployed Redis URL | |
# redis_client = redis.from_url( | |
# REDIS_URL, | |
# decode_responses=True, | |
# socket_connect_timeout=5, | |
# socket_timeout=5 | |
# ) | |
# # Test connection | |
# redis_client.ping() | |
# print(f"β Connected to deployed Redis: {REDIS_URL}") | |
# return redis_client | |
# else: | |
# # Use local Redis | |
# redis_client = redis.StrictRedis( | |
# host=REDIS_HOST, | |
# port=REDIS_PORT, | |
# password=REDIS_PASSWORD, | |
# decode_responses=True, | |
# socket_connect_timeout=5, | |
# socket_timeout=5 | |
# ) | |
# # Test connection | |
# redis_client.ping() | |
# print(f"β Connected to local Redis: {REDIS_HOST}:{REDIS_PORT}") | |
# return redis_client | |
# except Exception as e: | |
# print(f"β Redis connection failed: {e}") | |
# raise HTTPException(status_code=500, detail=f"Redis connection failed: {str(e)}") | |
# # Initialize Redis client | |
# redis_client = get_redis_client() | |
# # Initialize models | |
# embedding_model = OpenAIEmbeddings( | |
# model="text-embedding-3-large", | |
# openai_api_key=OPENAI_API_KEY, | |
# ) | |
# qdrant_client = QdrantClient(host=QDRANT_HOST, port=QDRANT_PORT) | |
# llm = ChatOpenAI(model="gpt-4o", temperature=0, openai_api_key=OPENAI_API_KEY) | |
# # === INPUT SCHEMAS === | |
# class Query(BaseModel): | |
# message: str | |
# class ProjectRequest(BaseModel): | |
# userLoginId: int | |
# orgId: int | |
# auth_token: str | |
# class BotQuery(BaseModel): | |
# userLoginId: int | |
# orgId: int | |
# auth_token: str | |
# session_id: Optional[str] = None | |
# message: str | |
# class SessionResponse(BaseModel): | |
# session_id: str | |
# userLoginId: int | |
# orgId: int | |
# created_at: str | |
# status: str | |
# class MessageResponse(BaseModel): | |
# message_id: str | |
# session_id: str | |
# role: str # "user" or "assistant" | |
# message: str | |
# timestamp: str | |
# class ChatHistoryResponse(BaseModel): | |
# session_id: str | |
# messages: List[MessageResponse] | |
# total_messages: int | |
# # === SESSION MANAGEMENT FUNCTIONS === | |
# def create_session(userLoginId: int, orgId: int, auth_token: str) -> dict: | |
# """Create a new chat session""" | |
# session_id = str(uuid.uuid4()) | |
# session_data = { | |
# "session_id": session_id, | |
# "userLoginId": userLoginId, | |
# "orgId": orgId, | |
# "auth_token": auth_token, | |
# "created_at": datetime.now().isoformat(), | |
# "status": "active" | |
# } | |
# # Store session in Redis with 24 hour TTL | |
# redis_client.setex( | |
# f"session:{session_id}", | |
# 86400, # 24 hours | |
# json.dumps(session_data) | |
# ) | |
# # Initialize empty chat history | |
# redis_client.setex( | |
# f"chat:{session_id}", | |
# 86400, # 24 hours | |
# json.dumps([]) | |
# ) | |
# # Initialize conversation memory | |
# redis_client.setex( | |
# f"memory:{session_id}", | |
# 86400, # 24 hours | |
# json.dumps([]) | |
# ) | |
# return session_data | |
# def get_session(session_id: str) -> dict: | |
# """Get session data from Redis""" | |
# session_data = redis_client.get(f"session:{session_id}") | |
# if not session_data: | |
# raise HTTPException(status_code=404, detail="Session not found or expired") | |
# return json.loads(session_data) | |
# def add_message_to_session(session_id: str, role: str, message: str) -> str: | |
# """Add message to session chat history""" | |
# message_id = str(uuid.uuid4()) | |
# message_data = { | |
# "message_id": message_id, | |
# "session_id": session_id, | |
# "role": role, | |
# "message": message, | |
# "timestamp": datetime.now().isoformat() | |
# } | |
# # Get current chat history | |
# chat_history = redis_client.get(f"chat:{session_id}") | |
# if chat_history: | |
# messages = json.loads(chat_history) | |
# else: | |
# messages = [] | |
# # Add new message | |
# messages.append(message_data) | |
# # Update chat history in Redis with extended TTL | |
# redis_client.setex( | |
# f"chat:{session_id}", | |
# 86400, # 24 hours | |
# json.dumps(messages) | |
# ) | |
# return message_id | |
# def get_session_memory(session_id: str) -> List[Dict]: | |
# """Get conversation memory for session""" | |
# memory_data = redis_client.get(f"memory:{session_id}") | |
# if memory_data: | |
# return json.loads(memory_data) | |
# return [] | |
# def update_session_memory(session_id: str, messages: List[Dict]): | |
# """Update conversation memory for session""" | |
# redis_client.setex( | |
# f"memory:{session_id}", | |
# 86400, # 24 hours | |
# json.dumps(messages) | |
# ) | |
# def get_user_sessions(userLoginId: int) -> List[dict]: | |
# """Get all sessions for a user""" | |
# sessions = [] | |
# # Scan for all session keys | |
# for key in redis_client.scan_iter(match="session:*"): | |
# session_data = redis_client.get(key) | |
# if session_data: | |
# session = json.loads(session_data) | |
# if session["userLoginId"] == userLoginId: | |
# sessions.append(session) | |
# return sessions | |
# def delete_session(session_id: str): | |
# """Delete session and associated data""" | |
# # Delete session data | |
# redis_client.delete(f"session:{session_id}") | |
# # Delete chat history | |
# redis_client.delete(f"chat:{session_id}") | |
# # Delete memory | |
# redis_client.delete(f"memory:{session_id}") | |
# # === UTILITY FUNCTIONS === | |
# def get_encoded_auth_token(user: int, token: str) -> str: | |
# auth_string = f"{user}:{token}" | |
# return base64.b64encode(auth_string.encode("utf-8")).decode("utf-8") | |
# def fetch_user_projects(userLoginId: int, orgId: int, auth_token: str): | |
# url = "https://japidemo.dev.ingenspark.com/fetchUserProjects" | |
# payload = { | |
# "userLoginId": userLoginId, | |
# "orgId": orgId | |
# } | |
# headers = { | |
# 'accept': 'application/json, text/plain, */*', | |
# 'authorization': f'Basic {auth_token}', | |
# 'content-type': 'application/json; charset=UTF-8' | |
# } | |
# try: | |
# response = requests.post(url, headers=headers, json=payload) | |
# response.raise_for_status() | |
# return response.json() | |
# except requests.exceptions.RequestException as e: | |
# raise HTTPException(status_code=response.status_code if 'response' in locals() else 500, | |
# detail=str(e)) | |
# def format_project_response(data: dict) -> str: | |
# my_projects = data.get("data", {}).get("Myprojects", []) | |
# other_projects = data.get("data", {}).get("Otherprojects", []) | |
# all_projects = [] | |
# for project in my_projects: | |
# all_projects.append({ | |
# "type": "Your Project", | |
# "projectNm": project["projectNm"], | |
# "projectId": project["projectId"], | |
# "created_dttm": project["created_dttm"].split('.')[0], | |
# "description": project["description"], | |
# "categoryName": project["categoryName"] | |
# }) | |
# for project in other_projects: | |
# all_projects.append({ | |
# "type": "Other Project", | |
# "projectNm": project["projectNm"], | |
# "projectId": project["projectId"], | |
# "created_dttm": project["created_dttm"].split('.')[0], | |
# "description": project["description"], | |
# "categoryName": project["categoryName"] | |
# }) | |
# if not all_projects: | |
# return "β No projects found." | |
# # Build the formatted string | |
# result = [f"β You have access to {len(all_projects)} project(s):\n"] | |
# for i, project in enumerate(all_projects, 1): | |
# result.append(f"{i}. Project Name: {project['projectNm']} ({project['type']})") | |
# result.append(f" Project ID: {project['projectId']}") | |
# result.append(f" Created On: {project['created_dttm']}") | |
# result.append(f" Description: {project['description']}") | |
# result.append(f" Category: {project['categoryName']}\n") | |
# return "\n".join(result) | |
# # === TOOL FUNCTIONS === | |
# def search_documents(query: str) -> str: | |
# """Search through ingested documents and get relevant information.""" | |
# try: | |
# # Generate embedding for the query | |
# query_vector = embedding_model.embed_query(query) | |
# # Search in Qdrant | |
# search_result = qdrant_client.search( | |
# collection_name=QDRANT_COLLECTION_NAME, | |
# query_vector=query_vector, | |
# limit=5, | |
# ) | |
# if not search_result: | |
# return "No relevant information found in the knowledge base." | |
# # Convert results to text content | |
# context_texts = [] | |
# sources = [] | |
# for hit in search_result: | |
# context_texts.append(hit.payload["text"]) | |
# sources.append(hit.payload.get("source", "unknown")) | |
# # Create a simple prompt for answering based on context | |
# context = "\n\n".join(context_texts) | |
# unique_sources = list(set(sources)) | |
# # Use the LLM directly to answer the message based on context | |
# prompt = f"""Based on the following context, answer the message: {query} | |
# Context: | |
# {context} | |
# Please provide a comprehensive answer based on the context above. If the context doesn't contain enough information to answer the message, say so clearly.""" | |
# response = llm.invoke(prompt) | |
# return f"{response.content}\n\nSources: {', '.join(unique_sources)}" | |
# except Exception as e: | |
# return f"Error searching documents: {str(e)}" | |
# # Global variables to store auth context (for tool functions) | |
# _current_user_id = None | |
# _current_org_id = None | |
# _current_auth_token = None | |
# def get_user_projects(userLoginId: str) -> str: | |
# """Get list of projects for a user.""" | |
# try: | |
# # Use global auth context if available | |
# if _current_auth_token and _current_user_id: | |
# user_id = _current_user_id | |
# org_id = _current_org_id or 1 | |
# auth_token = _current_auth_token | |
# else: | |
# return "β Authentication token required. Please provide auth_token in your request." | |
# # Encode auth token using the actual user ID and provided token | |
# encoded_token = get_encoded_auth_token(user_id, auth_token) | |
# # Fetch projects | |
# data = fetch_user_projects(user_id, org_id, encoded_token) | |
# # Format and return the project list | |
# formatted = format_project_response(data) | |
# return formatted | |
# except ValueError: | |
# return "β Invalid userLoginId format. Please provide a valid number." | |
# except Exception as e: | |
# return f"β Error fetching projects: {str(e)}" | |
# # === CREATE TOOLS === | |
# document_search_tool = Tool( | |
# name="document_search", | |
# description="""Use this tool to search through ingested documents and get relevant information from the knowledge base. | |
# Perfect for answering messages about uploaded documents, manuals, or any content that was previously stored. | |
# Input should be a search query or message about the documents.""", | |
# func=search_documents | |
# ) | |
# project_list_tool = Tool( | |
# name="get_user_projects", | |
# description="""Use this tool to get the list of projects for a user. | |
# Perfect for when users ask about their projects, want to see available projects, or need project information. | |
# Input should be the userLoginId (e.g., '25'). | |
# Note: This tool requires authentication context to be set.""", | |
# func=get_user_projects | |
# ) | |
# # === AGENT SETUP === | |
# def create_agent_with_session_memory(session_id: str): | |
# """Create agent with session memory from Redis""" | |
# # Get memory from Redis | |
# memory_messages = get_session_memory(session_id) | |
# agent_prompt = ChatPromptTemplate.from_messages([ | |
# ("system", """You are a helpful AI assistant with access to multiple tools and conversation memory: | |
# 1. **Document Search**: Search through uploaded documents and knowledge base | |
# 2. **Project Management**: Get list of user projects and project information | |
# Your capabilities: | |
# - Answer messages about documents using the document search tool | |
# - Help users find their projects and project information | |
# - Remember previous conversations in this session | |
# - Provide general assistance and information | |
# - Use appropriate tools based on user queries | |
# Guidelines: | |
# - Use the document search tool when users ask about specific content, documentation, or information that might be in uploaded files | |
# - Use the project tool when users ask about projects, want to see their projects, or need project-related information | |
# - Reference previous conversation context when relevant | |
# - Be clear about which tool you're using and what information you're providing | |
# - If you're unsure which tool to use, you can ask for clarification | |
# - Provide helpful, accurate, and well-formatted responses | |
# Remember: Always use the most appropriate tool based on the user's message and conversation context to provide the best possible answer."""), | |
# MessagesPlaceholder(variable_name="chat_history"), | |
# ("user", "{input}"), | |
# MessagesPlaceholder(variable_name="agent_scratchpad"), | |
# ]) | |
# # Create memory object | |
# memory = ConversationBufferMemory( | |
# memory_key="chat_history", | |
# return_messages=True | |
# ) | |
# # Load existing messages into memory | |
# for msg in memory_messages: | |
# if msg["role"] == "user": | |
# memory.chat_memory.add_user_message(msg["message"]) | |
# else: | |
# memory.chat_memory.add_ai_message(msg["message"]) | |
# # Create tools list | |
# tools = [document_search_tool, project_list_tool] | |
# # Create the agent | |
# agent = create_openai_tools_agent(llm, tools, agent_prompt) | |
# # Create the agent executor with memory | |
# agent_executor = AgentExecutor( | |
# agent=agent, | |
# tools=tools, | |
# verbose=True, | |
# memory=memory | |
# ) | |
# return agent_executor, memory | |
# # === API ENDPOINTS === | |
# @app.post("/sessions", response_model=SessionResponse) | |
# def create_new_session(userLoginId: int, orgId: int, auth_token: str): | |
# """Create a new chat session""" | |
# try: | |
# session_data = create_session(userLoginId, orgId, auth_token) | |
# return SessionResponse(**session_data) | |
# except Exception as e: | |
# raise HTTPException(status_code=500, detail=f"Error creating session: {str(e)}") | |
# @app.get("/sessions") | |
# def list_user_sessions(userLoginId: int): | |
# """List all sessions for a user""" | |
# try: | |
# sessions = get_user_sessions(userLoginId) | |
# return { | |
# "userLoginId": userLoginId, | |
# "total_sessions": len(sessions), | |
# "sessions": sessions | |
# } | |
# except Exception as e: | |
# raise HTTPException(status_code=500, detail=f"Error fetching sessions: {str(e)}") | |
# @app.delete("/sessions/{session_id}") | |
# def delete_user_session(session_id: str): | |
# """Delete/close a session""" | |
# try: | |
# # Verify session exists | |
# get_session(session_id) | |
# # Delete session | |
# delete_session(session_id) | |
# return { | |
# "message": f"Session {session_id} deleted successfully", | |
# "session_id": session_id | |
# } | |
# except Exception as e: | |
# raise HTTPException(status_code=500, detail=f"Error deleting session: {str(e)}") | |
# @app.post("/bot") | |
# def chat_with_bot(query: BotQuery): | |
# """Main bot endpoint with session management""" | |
# try: | |
# # Set global auth context for tools | |
# global _current_user_id, _current_org_id, _current_auth_token | |
# _current_user_id = query.userLoginId | |
# _current_org_id = query.orgId | |
# _current_auth_token = query.auth_token | |
# session_id = query.session_id | |
# # Create new session if not provided | |
# if not session_id: | |
# session_data = create_session(query.userLoginId, query.orgId, query.auth_token) | |
# session_id = session_data["session_id"] | |
# else: | |
# # Verify existing session | |
# get_session(session_id) | |
# # Add user message to session | |
# user_message_id = add_message_to_session(session_id, "user", query.message) | |
# # Create agent with session memory | |
# agent_executor, memory = create_agent_with_session_memory(session_id) | |
# # Use the agent to process the query | |
# result = agent_executor.invoke({"input": query.message}) | |
# # Add AI response to session | |
# ai_message_id = add_message_to_session(session_id, "assistant", result["output"]) | |
# # Update session memory in Redis | |
# updated_messages = [] | |
# for message in memory.chat_memory.messages: | |
# if hasattr(message, 'content'): | |
# role = "user" if message.__class__.__name__ == "HumanMessage" else "assistant" | |
# updated_messages.append({ | |
# "role": role, | |
# "message": message.content, | |
# "timestamp": datetime.now().isoformat() | |
# }) | |
# update_session_memory(session_id, updated_messages) | |
# # Clear auth context after use | |
# _current_user_id = None | |
# _current_org_id = None | |
# _current_auth_token = None | |
# return { | |
# "session_id": session_id, | |
# "user_message_id": user_message_id, | |
# "ai_message_id": ai_message_id, | |
# "message": query.message, | |
# "answer": result["output"], | |
# "userLoginId": query.userLoginId, | |
# "agent_used": True | |
# } | |
# except Exception as e: | |
# # Clear auth context on error | |
# _current_user_id = None | |
# _current_org_id = None | |
# _current_auth_token = None | |
# raise HTTPException(status_code=500, detail=f"Error processing chat: {str(e)}") | |
# @app.get("/sessions/{session_id}/history", response_model=ChatHistoryResponse) | |
# def get_session_history(session_id: str, n: int = QueryParam(50, description="Number of recent messages to return")): | |
# """Get chat history for a session""" | |
# try: | |
# # Verify session exists | |
# get_session(session_id) | |
# # Get chat history | |
# chat_data = redis_client.get(f"chat:{session_id}") | |
# if not chat_data: | |
# return ChatHistoryResponse( | |
# session_id=session_id, | |
# messages=[], | |
# total_messages=0 | |
# ) | |
# messages = json.loads(chat_data) | |
# # Get the last n messages (or all if less than n) | |
# recent_messages = messages[-n:] if len(messages) > n else messages | |
# # Convert to MessageResponse objects | |
# message_responses = [MessageResponse(**msg) for msg in recent_messages] | |
# return ChatHistoryResponse( | |
# session_id=session_id, | |
# messages=message_responses, | |
# total_messages=len(messages) | |
# ) | |
# except Exception as e: | |
# raise HTTPException(status_code=500, detail=f"Error fetching chat history: {str(e)}") | |
# @app.post("/chat-documents") | |
# def chat_documents_only(query: Query): | |
# """Direct document search without agent""" | |
# try: | |
# result = search_documents(query.message) | |
# return { | |
# "message": query.message, | |
# "answer": result, | |
# "tool_used": "document_search" | |
# } | |
# except Exception as e: | |
# return { | |
# "message": query.message, | |
# "answer": f"An error occurred: {str(e)}", | |
# "tool_used": "document_search" | |
# } | |
# @app.post("/list-projects") | |
# def list_projects(request: ProjectRequest): | |
# """Direct project listing without agent""" | |
# try: | |
# # Use the provided auth token and userLoginId | |
# encoded_token = get_encoded_auth_token(request.userLoginId, request.auth_token) | |
# # Fetch projects | |
# data = fetch_user_projects(request.userLoginId, request.orgId, encoded_token) | |
# # Format and return the project list | |
# formatted = format_project_response(data) | |
# return { | |
# "projects": formatted, | |
# "tool_used": "project_list" | |
# } | |
# except Exception as e: | |
# return { | |
# "error": f"An error occurred: {str(e)}", | |
# "tool_used": "project_list" | |
# } | |
# @app.get("/redis-info") | |
# def redis_info(): | |
# """Get Redis connection information""" | |
# try: | |
# info = redis_client.info() | |
# return { | |
# "redis_connected": True, | |
# "redis_version": info.get("redis_version"), | |
# "used_memory": info.get("used_memory_human"), | |
# "connected_clients": info.get("connected_clients"), | |
# "total_keys": redis_client.dbsize() | |
# } | |
# except Exception as e: | |
# return { | |
# "redis_connected": False, | |
# "error": str(e) | |
# } | |
# @app.get("/health") | |
# def health(): | |
# try: | |
# redis_client.ping() | |
# redis_status = "connected" | |
# except: | |
# redis_status = "disconnected" | |
# return { | |
# "status": "ok", | |
# "tools": ["document_search", "project_list"], | |
# "agent": "active", | |
# "session_management": "enabled", | |
# "redis_status": redis_status, | |
# "total_sessions": len(list(redis_client.scan_iter(match="session:*"))) | |
# } | |
# if __name__ == "__main__": | |
# import uvicorn | |
# try: | |
# uvicorn.run(app, host="0.0.0.0", port=8000) | |
# except KeyboardInterrupt: | |
# print("\nπ Server stopped gracefully") | |
# except Exception as e: | |
# print(f"β Server error: {e}") | |
#_______________________________________________session id -- with redis - chat session memory _________________________________________________________ | |
# | |
from fastapi import FastAPI, HTTPException, Query as QueryParam | |
from pydantic import BaseModel, Field | |
from langchain_openai import ChatOpenAI, OpenAIEmbeddings | |
from qdrant_client import QdrantClient | |
from langchain.agents import Tool, AgentExecutor, create_openai_tools_agent | |
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder | |
from langchain.memory import ConversationBufferMemory | |
from typing import Optional, List, Dict, Any | |
import os | |
import warnings | |
import base64 | |
import requests | |
from dotenv import load_dotenv | |
from datetime import datetime | |
import json | |
import uuid | |
import redis | |
# Suppress warnings | |
warnings.filterwarnings("ignore", message="Qdrant client version.*is incompatible.*") | |
load_dotenv() | |
app = FastAPI(title="AI Agent with Redis Session Management") | |
# Environment variables | |
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") | |
QDRANT_COLLECTION_NAME = os.getenv("QDRANT_COLLECTION_NAME", "vatsav_test_1") | |
QDRANT_HOST = os.getenv("QDRANT_HOST", "127.0.0.1") | |
QDRANT_PORT = int(os.getenv("QDRANT_PORT", 6333)) | |
# Redis Configuration | |
REDIS_URL = os.getenv("REDIS_URL") | |
REDIS_HOST = os.getenv("REDIS_HOST", "127.0.0.1") | |
REDIS_PORT = int(os.getenv("REDIS_PORT", 6379)) | |
REDIS_PASSWORD = os.getenv("REDIS_PASSWORD") | |
# Initialize Redis client | |
def get_redis_client(): | |
"""Initialize Redis client with fallback to local Redis""" | |
try: | |
if REDIS_URL: | |
# Use deployed Redis URL | |
redis_client = redis.from_url( | |
REDIS_URL, | |
decode_responses=True, | |
socket_connect_timeout=5, | |
socket_timeout=5 | |
) | |
# Test connection | |
redis_client.ping() | |
print(f"β Connected to deployed Redis: {REDIS_URL}") | |
return redis_client | |
else: | |
# Use local Redis | |
redis_client = redis.StrictRedis( | |
host=REDIS_HOST, | |
port=REDIS_PORT, | |
password=REDIS_PASSWORD, | |
decode_responses=True, | |
socket_connect_timeout=5, | |
socket_timeout=5 | |
) | |
# Test connection | |
redis_client.ping() | |
print(f"β Connected to local Redis: {REDIS_HOST}:{REDIS_PORT}") | |
return redis_client | |
except Exception as e: | |
print(f"β Redis connection failed: {e}") | |
raise HTTPException(status_code=500, detail=f"Redis connection failed: {str(e)}") | |
# Initialize Redis client | |
redis_client = get_redis_client() | |
# Initialize models | |
embedding_model = OpenAIEmbeddings( | |
model="text-embedding-3-large", | |
openai_api_key=OPENAI_API_KEY, | |
) | |
qdrant_client = QdrantClient(host=QDRANT_HOST, port=QDRANT_PORT) | |
llm = ChatOpenAI(model="gpt-4o", temperature=0, openai_api_key=OPENAI_API_KEY) | |
# === INPUT SCHEMAS === | |
class Query(BaseModel): | |
message: str | |
class ProjectRequest(BaseModel): | |
userLoginId: int | |
orgId: int | |
auth_token: str | |
class BotQuery(BaseModel): | |
userLoginId: int | |
orgId: int | |
auth_token: str | |
session_id: Optional[str] = None | |
message: str | |
class SessionResponse(BaseModel): | |
session_id: str | |
userLoginId: int | |
orgId: int | |
created_at: str | |
status: str | |
title: Optional[str] = "New Chat" | |
class MessageResponse(BaseModel): | |
message_id: str | |
session_id: str | |
role: str # "user" or "assistant" | |
message: str | |
timestamp: str | |
class ChatHistoryResponse(BaseModel): | |
session_id: str | |
messages: List[MessageResponse] | |
total_messages: int | |
# === SESSION MANAGEMENT FUNCTIONS === | |
def create_session(userLoginId: int, orgId: int, auth_token: str) -> dict: | |
"""Create a new chat session""" | |
session_id = str(uuid.uuid4()) | |
session_data = { | |
"session_id": session_id, | |
"userLoginId": userLoginId, | |
"orgId": orgId, | |
"auth_token": auth_token, | |
"created_at": datetime.now().isoformat(), | |
"status": "active", | |
"title": "New Chat" # Default title, will be updated after first message | |
} | |
# Store session in Redis with 24 hour TTL | |
redis_client.setex( | |
f"session:{session_id}", | |
86400, # 24 hours | |
json.dumps(session_data) | |
) | |
# Initialize empty chat history | |
redis_client.setex( | |
f"chat:{session_id}", | |
86400, # 24 hours | |
json.dumps([]) | |
) | |
# Initialize conversation memory | |
redis_client.setex( | |
f"memory:{session_id}", | |
86400, # 24 hours | |
json.dumps([]) | |
) | |
return session_data | |
def get_session(session_id: str) -> dict: | |
"""Get session data from Redis""" | |
session_data = redis_client.get(f"session:{session_id}") | |
if not session_data: | |
raise HTTPException(status_code=404, detail="Session not found or expired") | |
return json.loads(session_data) | |
def add_message_to_session(session_id: str, role: str, message: str) -> str: | |
"""Add message to session chat history""" | |
message_id = str(uuid.uuid4()) | |
message_data = { | |
"message_id": message_id, | |
"session_id": session_id, | |
"role": role, | |
"message": message, | |
"timestamp": datetime.now().isoformat() | |
} | |
# Get current chat history | |
chat_history = redis_client.get(f"chat:{session_id}") | |
if chat_history: | |
messages = json.loads(chat_history) | |
else: | |
messages = [] | |
# Add new message | |
messages.append(message_data) | |
# Update chat history in Redis with extended TTL | |
redis_client.setex( | |
f"chat:{session_id}", | |
86400, # 24 hours | |
json.dumps(messages) | |
) | |
return message_id | |
def get_session_memory(session_id: str) -> List[Dict]: | |
"""Get conversation memory for session""" | |
memory_data = redis_client.get(f"memory:{session_id}") | |
if memory_data: | |
return json.loads(memory_data) | |
return [] | |
def update_session_memory(session_id: str, messages: List[Dict]): | |
"""Update conversation memory for session""" | |
redis_client.setex( | |
f"memory:{session_id}", | |
86400, # 24 hours | |
json.dumps(messages) | |
) | |
def update_session_title(session_id: str): | |
"""Update session title after first message""" | |
try: | |
# Get session data | |
session_data = redis_client.get(f"session:{session_id}") | |
if not session_data: | |
return | |
session = json.loads(session_data) | |
# Only update if current title is "New Chat" | |
if session.get("title", "New Chat") == "New Chat": | |
new_title = generate_session_title(session_id) | |
session["title"] = new_title | |
# Update session in Redis | |
redis_client.setex( | |
f"session:{session_id}", | |
86400, # 24 hours | |
json.dumps(session) | |
) | |
except Exception as e: | |
print(f"Error updating session title: {e}") | |
pass # Don't fail the request if title update fails | |
def generate_session_title(session_id: str) -> str: | |
"""Generate a title for the session based on chat history""" | |
try: | |
# Get chat history | |
chat_data = redis_client.get(f"chat:{session_id}") | |
if not chat_data: | |
return "New Chat" | |
messages = json.loads(chat_data) | |
if not messages: | |
return "New Chat" | |
# Get first user message for title generation | |
first_user_message = None | |
for msg in messages: | |
if msg["role"] == "user": | |
first_user_message = msg["message"] | |
break | |
if not first_user_message: | |
return "New Chat" | |
# Generate title using LLM | |
title_prompt = f"""Generate a short, descriptive title (maximum 6 words) for a chat conversation that starts with this message: | |
"{first_user_message[:200]}" | |
Return only the title, no quotes or additional text. The title should capture the main topic or intent of the conversation.""" | |
try: | |
response = llm.invoke(title_prompt) | |
title = response.content.strip() | |
# Clean and limit title | |
title = title.replace('"', '').replace("'", "") | |
if len(title) > 50: | |
title = title[:47] + "..." | |
return title if title else "New Chat" | |
except Exception as e: | |
print(f"Error generating title: {e}") | |
# Fallback: use first few words of the message | |
words = first_user_message.split()[:4] | |
return " ".join(words) + ("..." if len(words) >= 4 else "") | |
except Exception as e: | |
print(f"Error in generate_session_title: {e}") | |
return "New Chat" | |
def get_user_sessions(userLoginId: int) -> List[dict]: | |
"""Get all sessions for a user with generated titles""" | |
sessions = [] | |
# Scan for all session keys | |
for key in redis_client.scan_iter(match="session:*"): | |
session_data = redis_client.get(key) | |
if session_data: | |
session = json.loads(session_data) | |
if session["userLoginId"] == userLoginId: | |
# Generate title based on chat history | |
session["title"] = generate_session_title(session["session_id"]) | |
sessions.append(session) | |
# Sort sessions by created_at (most recent first) | |
sessions.sort(key=lambda x: x["created_at"], reverse=True) | |
return sessions | |
def delete_session(session_id: str): | |
"""Delete session and associated data""" | |
# Delete session data | |
redis_client.delete(f"session:{session_id}") | |
# Delete chat history | |
redis_client.delete(f"chat:{session_id}") | |
# Delete memory | |
redis_client.delete(f"memory:{session_id}") | |
# === UTILITY FUNCTIONS === | |
def get_encoded_auth_token(user: int, token: str) -> str: | |
auth_string = f"{user}:{token}" | |
return base64.b64encode(auth_string.encode("utf-8")).decode("utf-8") | |
def fetch_user_projects(userLoginId: int, orgId: int, auth_token: str): | |
url = "https://japidemo.dev.ingenspark.com/fetchUserProjects" | |
payload = { | |
"userLoginId": userLoginId, | |
"orgId": orgId | |
} | |
headers = { | |
'accept': 'application/json, text/plain, */*', | |
'authorization': f'Basic {auth_token}', | |
'content-type': 'application/json; charset=UTF-8' | |
} | |
try: | |
response = requests.post(url, headers=headers, json=payload) | |
response.raise_for_status() | |
return response.json() | |
except requests.exceptions.RequestException as e: | |
raise HTTPException(status_code=response.status_code if 'response' in locals() else 500, | |
detail=str(e)) | |
def format_project_response(data: dict) -> str: | |
my_projects = data.get("data", {}).get("Myprojects", []) | |
other_projects = data.get("data", {}).get("Otherprojects", []) | |
all_projects = [] | |
for project in my_projects: | |
all_projects.append({ | |
"type": "Your Project", | |
"projectNm": project["projectNm"], | |
"projectId": project["projectId"], | |
"created_dttm": project["created_dttm"].split('.')[0], | |
"description": project["description"], | |
"categoryName": project["categoryName"] | |
}) | |
for project in other_projects: | |
all_projects.append({ | |
"type": "Other Project", | |
"projectNm": project["projectNm"], | |
"projectId": project["projectId"], | |
"created_dttm": project["created_dttm"].split('.')[0], | |
"description": project["description"], | |
"categoryName": project["categoryName"] | |
}) | |
if not all_projects: | |
return "β No projects found." | |
# Build the formatted string | |
result = [f"β You have access to {len(all_projects)} project(s):\n"] | |
for i, project in enumerate(all_projects, 1): | |
result.append(f"{i}. Project Name: {project['projectNm']} ({project['type']})") | |
result.append(f" Project ID: {project['projectId']}") | |
result.append(f" Created On: {project['created_dttm']}") | |
result.append(f" Description: {project['description']}") | |
result.append(f" Category: {project['categoryName']}\n") | |
return "\n".join(result) | |
# === TOOL FUNCTIONS === | |
def search_documents(query: str) -> str: | |
"""Search through ingested documents and get relevant information.""" | |
try: | |
# Generate embedding for the query | |
query_vector = embedding_model.embed_query(query) | |
# Search in Qdrant | |
search_result = qdrant_client.search( | |
collection_name=QDRANT_COLLECTION_NAME, | |
query_vector=query_vector, | |
limit=5, | |
) | |
if not search_result: | |
return "No relevant information found in the knowledge base." | |
# Convert results to text content | |
context_texts = [] | |
sources = [] | |
for hit in search_result: | |
context_texts.append(hit.payload["text"]) | |
sources.append(hit.payload.get("source", "unknown")) | |
# Create a simple prompt for answering based on context | |
context = "\n\n".join(context_texts) | |
unique_sources = list(set(sources)) | |
# Use the LLM directly to answer the message based on context | |
prompt = f"""Based on the following context, answer the message: {query} | |
Context: | |
{context} | |
Please provide a comprehensive answer based on the context above. If the context doesn't contain enough information to answer the message, say so clearly.""" | |
response = llm.invoke(prompt) | |
return f"{response.content}\n\nSources: {', '.join(unique_sources)}" | |
except Exception as e: | |
return f"Error searching documents: {str(e)}" | |
# Global variables to store auth context (for tool functions) | |
_current_user_id = None | |
_current_org_id = None | |
_current_auth_token = None | |
def get_user_projects(userLoginId: str) -> str: | |
"""Get list of projects for a user.""" | |
try: | |
# Use global auth context if available | |
if _current_auth_token and _current_user_id: | |
user_id = _current_user_id | |
org_id = _current_org_id or 1 | |
auth_token = _current_auth_token | |
else: | |
return "β Authentication token required. Please provide auth_token in your request." | |
# Encode auth token using the actual user ID and provided token | |
encoded_token = get_encoded_auth_token(user_id, auth_token) | |
# Fetch projects | |
data = fetch_user_projects(user_id, org_id, encoded_token) | |
# Format and return the project list | |
formatted = format_project_response(data) | |
return formatted | |
except ValueError: | |
return "β Invalid userLoginId format. Please provide a valid number." | |
except Exception as e: | |
return f"β Error fetching projects: {str(e)}" | |
# === CREATE TOOLS === | |
document_search_tool = Tool( | |
name="document_search", | |
description="""Use this tool to search through ingested documents and get relevant information from the knowledge base. | |
Perfect for answering messages about uploaded documents, manuals, or any content that was previously stored. | |
Input should be a search query or message about the documents.""", | |
func=search_documents | |
) | |
project_list_tool = Tool( | |
name="get_user_projects", | |
description="""Use this tool to get the list of projects for a user. | |
Perfect for when users ask about their projects, want to see available projects, or need project information. | |
Input should be the userLoginId (e.g., '25'). | |
Note: This tool requires authentication context to be set.""", | |
func=get_user_projects | |
) | |
# === AGENT SETUP === | |
def create_agent_with_session_memory(session_id: str): | |
"""Create agent with session memory from Redis""" | |
# Get memory from Redis | |
memory_messages = get_session_memory(session_id) | |
agent_prompt = ChatPromptTemplate.from_messages([ | |
("system", """You are a helpful AI assistant with access to multiple tools and conversation memory: | |
1. **Document Search**: Search through uploaded documents and knowledge base | |
2. **Project Management**: Get list of user projects and project information | |
Your capabilities: | |
- Answer messages about documents using the document search tool | |
- Help users find their projects and project information | |
- Remember previous conversations in this session | |
- Provide general assistance and information | |
- Use appropriate tools based on user queries | |
Guidelines: | |
- Use the document search tool when users ask about specific content, documentation, or information that might be in uploaded files | |
- Use the project tool when users ask about projects, want to see their projects, or need project-related information | |
- Reference previous conversation context when relevant | |
- Be clear about which tool you're using and what information you're providing | |
- If you're unsure which tool to use, you can ask for clarification | |
- Provide helpful, accurate, and well-formatted responses | |
Remember: Always use the most appropriate tool based on the user's message and conversation context to provide the best possible answer."""), | |
MessagesPlaceholder(variable_name="chat_history"), | |
("user", "{input}"), | |
MessagesPlaceholder(variable_name="agent_scratchpad"), | |
]) | |
# Create memory object | |
memory = ConversationBufferMemory( | |
memory_key="chat_history", | |
return_messages=True | |
) | |
# Load existing messages into memory | |
for msg in memory_messages: | |
if msg["role"] == "user": | |
memory.chat_memory.add_user_message(msg["message"]) | |
else: | |
memory.chat_memory.add_ai_message(msg["message"]) | |
# Create tools list | |
tools = [document_search_tool, project_list_tool] | |
# Create the agent | |
agent = create_openai_tools_agent(llm, tools, agent_prompt) | |
# Create the agent executor with memory | |
agent_executor = AgentExecutor( | |
agent=agent, | |
tools=tools, | |
verbose=True, | |
memory=memory | |
) | |
return agent_executor, memory | |
# === API ENDPOINTS === | |
def create_new_session(userLoginId: int, orgId: int, auth_token: str): | |
"""Create a new chat session""" | |
try: | |
session_data = create_session(userLoginId, orgId, auth_token) | |
return SessionResponse(**session_data) | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Error creating session: {str(e)}") | |
def list_user_sessions(userLoginId: int): | |
"""List all sessions for a user""" | |
try: | |
sessions = get_user_sessions(userLoginId) | |
return { | |
"userLoginId": userLoginId, | |
"total_sessions": len(sessions), | |
"sessions": sessions | |
} | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Error fetching sessions: {str(e)}") | |
def delete_user_session(session_id: str): | |
"""Delete/close a session""" | |
try: | |
# Verify session exists | |
get_session(session_id) | |
# Delete session | |
delete_session(session_id) | |
return { | |
"message": f"Session {session_id} deleted successfully", | |
"session_id": session_id | |
} | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Error deleting session: {str(e)}") | |
def chat_with_bot(query: BotQuery): | |
"""Main bot endpoint with session management""" | |
try: | |
# Set global auth context for tools | |
global _current_user_id, _current_org_id, _current_auth_token | |
_current_user_id = query.userLoginId | |
_current_org_id = query.orgId | |
_current_auth_token = query.auth_token | |
session_id = query.session_id | |
# Create new session if not provided | |
if not session_id: | |
session_data = create_session(query.userLoginId, query.orgId, query.auth_token) | |
session_id = session_data["session_id"] | |
else: | |
# Verify existing session | |
get_session(session_id) | |
# Add user message to session | |
user_message_id = add_message_to_session(session_id, "user", query.message) | |
# Create agent with session memory | |
agent_executor, memory = create_agent_with_session_memory(session_id) | |
# Use the agent to process the query | |
result = agent_executor.invoke({"input": query.message}) | |
# Add AI response to session | |
ai_message_id = add_message_to_session(session_id, "assistant", result["output"]) | |
# Update session memory in Redis | |
updated_messages = [] | |
for message in memory.chat_memory.messages: | |
if hasattr(message, 'content'): | |
role = "user" if message.__class__.__name__ == "HumanMessage" else "assistant" | |
updated_messages.append({ | |
"role": role, | |
"message": message.content, | |
"timestamp": datetime.now().isoformat() | |
}) | |
update_session_memory(session_id, updated_messages) | |
# Update session title after first user message | |
update_session_title(session_id) | |
# Clear auth context after use | |
_current_user_id = None | |
_current_org_id = None | |
_current_auth_token = None | |
return { | |
"session_id": session_id, | |
"user_message_id": user_message_id, | |
"ai_message_id": ai_message_id, | |
"message": query.message, | |
"answer": result["output"], | |
"userLoginId": query.userLoginId, | |
"agent_used": True | |
} | |
except Exception as e: | |
# Clear auth context on error | |
_current_user_id = None | |
_current_org_id = None | |
_current_auth_token = None | |
raise HTTPException(status_code=500, detail=f"Error processing chat: {str(e)}") | |
def get_session_history(session_id: str, n: int = QueryParam(50, description="Number of recent messages to return")): | |
"""Get chat history for a session""" | |
try: | |
# Verify session exists | |
get_session(session_id) | |
# Get chat history | |
chat_data = redis_client.get(f"chat:{session_id}") | |
if not chat_data: | |
return ChatHistoryResponse( | |
session_id=session_id, | |
messages=[], | |
total_messages=0 | |
) | |
messages = json.loads(chat_data) | |
# Get the last n messages (or all if less than n) | |
recent_messages = messages[-n:] if len(messages) > n else messages | |
# Convert to MessageResponse objects | |
message_responses = [MessageResponse(**msg) for msg in recent_messages] | |
return ChatHistoryResponse( | |
session_id=session_id, | |
messages=message_responses, | |
total_messages=len(messages) | |
) | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Error fetching chat history: {str(e)}") | |
def chat_documents_only(query: Query): | |
"""Direct document search without agent""" | |
try: | |
result = search_documents(query.message) | |
return { | |
"message": query.message, | |
"answer": result, | |
"tool_used": "document_search" | |
} | |
except Exception as e: | |
return { | |
"message": query.message, | |
"answer": f"An error occurred: {str(e)}", | |
"tool_used": "document_search" | |
} | |
def list_projects(request: ProjectRequest): | |
"""Direct project listing without agent""" | |
try: | |
# Use the provided auth token and userLoginId | |
encoded_token = get_encoded_auth_token(request.userLoginId, request.auth_token) | |
# Fetch projects | |
data = fetch_user_projects(request.userLoginId, request.orgId, encoded_token) | |
# Format and return the project list | |
formatted = format_project_response(data) | |
return { | |
"projects": formatted, | |
"tool_used": "project_list" | |
} | |
except Exception as e: | |
return { | |
"error": f"An error occurred: {str(e)}", | |
"tool_used": "project_list" | |
} | |
def refresh_session_title(session_id: str): | |
"""Manually refresh/regenerate session title""" | |
try: | |
# Verify session exists | |
session_data = get_session(session_id) | |
# Generate new title | |
new_title = generate_session_title(session_id) | |
# Update session | |
session_data["title"] = new_title | |
redis_client.setex( | |
f"session:{session_id}", | |
86400, # 24 hours | |
json.dumps(session_data) | |
) | |
return { | |
"session_id": session_id, | |
"new_title": new_title, | |
"message": "Session title updated successfully" | |
} | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Error updating session title: {str(e)}") | |
def redis_info(): | |
"""Get Redis connection information""" | |
try: | |
info = redis_client.info() | |
return { | |
"redis_connected": True, | |
"redis_version": info.get("redis_version"), | |
"used_memory": info.get("used_memory_human"), | |
"connected_clients": info.get("connected_clients"), | |
"total_keys": redis_client.dbsize() | |
} | |
except Exception as e: | |
return { | |
"redis_connected": False, | |
"error": str(e) | |
} | |
def health(): | |
try: | |
redis_client.ping() | |
redis_status = "connected" | |
except: | |
redis_status = "disconnected" | |
return { | |
"status": "ok", | |
"tools": ["document_search", "project_list"], | |
"agent": "active", | |
"session_management": "enabled", | |
"redis_status": redis_status, | |
"total_sessions": len(list(redis_client.scan_iter(match="session:*"))) | |
} | |
if __name__ == "__main__": | |
import uvicorn | |
try: | |
uvicorn.run(app, host="0.0.0.0", port=8000) | |
except KeyboardInterrupt: | |
print("\nπ Server stopped gracefully") | |
except Exception as e: | |
print(f"β Server error: {e}") | |
#______________________________________________sucess true false _pandasai tool_________________________________________________________________ | |
# from dotenv import load_dotenv | |
# from datetime import datetime | |
# import json | |
# import uuid | |
# import redis | |
# # Pandas AI imports | |
# import re | |
# import urllib.parse | |
# import pandas as pd | |
# import dask.dataframe as dd | |
# from math import ceil | |
# import psycopg2 | |
# from pandasai import SmartDataframe | |
# from pandasai.llm.openai import OpenAI as PandasOpenAI | |
# from fastapi import FastAPI, Request | |
# from fastapi.responses import JSONResponse | |
# import json | |
# # Import your existing S3 connection details | |
# from retrive_secrects import * # CONNECTIONS_HOST, etc. | |
# # Suppress warnings | |
# warnings.filterwarnings("ignore", message="Qdrant client version.*is incompatible.*") | |
# load_dotenv() | |
# app = FastAPI(title="AI Agent with Redis Session Management and Pandas AI") | |
# # Environment variables | |
# OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") | |
# QDRANT_COLLECTION_NAME = os.getenv("QDRANT_COLLECTION_NAME", "vatsav_test_1") | |
# QDRANT_HOST = os.getenv("QDRANT_HOST", "127.0.0.1") | |
# QDRANT_PORT = int(os.getenv("QDRANT_PORT", 6333)) | |
# # Redis Configuration | |
# REDIS_URL = os.getenv("REDIS_URL") | |
# REDIS_HOST = os.getenv("REDIS_HOST", "127.0.0.1") | |
# REDIS_PORT = int(os.getenv("REDIS_PORT", 6379)) | |
# REDIS_PASSWORD = os.getenv("REDIS_PASSWORD") | |
# # S3 Constants (from your original code) | |
# S3_Bucket_Name = 'ingenspark-user-files' | |
# S3_Raw_Files_Folder = 'User-Uploaded-Raw-Files' | |
# S3_Modified_Files_Folder = 'Modified-Files/' | |
# S3_Output_Files_Folder = 'Output-Files/' | |
# S3_Published_Results_Folder = 'Published-Results/' | |
# S3_Ingen_Customer_Output = 'Ingen-Customer/' | |
# Dominant_Segmentation_Output = 'Dominant-Segmentation/' | |
# Trend_Segmentation_Output = 'Trend-Segmentation/' | |
# Decile_Quartile_segmentation_Output = 'Decile-Quartile-Segmentation/' | |
# Combined_Segmentation_Output = 'Combine-Segmentation/' | |
# Custom_Segmentation_Output = 'Custom-Segmentation/' | |
# Customer_360_Output = 'Customer-360/' | |
# Merge_file_folder = S3_Modified_Files_Folder + 'IngenData-Merged-Tables/' | |
# S3_Dev_Doc_Images_Folder = 'Developers-Documentation-Images/' | |
# S3_Temporary_Files_Folder = S3_Raw_Files_Folder | |
# S3_App_Specific_Data = 'Application-Specific-Data/' | |
# S3_Transformation_Tables_Folder = 'Modified-Files/Modified-Tables/Transformation-Tables/' | |
# cloud_front_url = "https://files.dev.ingenspark.com/" | |
# # Initialize Redis client | |
# def get_redis_client(): | |
# """Initialize Redis client with fallback to local Redis""" | |
# try: | |
# if REDIS_URL: | |
# # Use deployed Redis URL | |
# redis_client = redis.from_url( | |
# REDIS_URL, | |
# decode_responses=True, | |
# socket_connect_timeout=5, | |
# socket_timeout=5 | |
# ) | |
# # Test connection | |
# redis_client.ping() | |
# print(f"β Connected to deployed Redis: {REDIS_URL}") | |
# return redis_client | |
# else: | |
# # Use local Redis | |
# redis_client = redis.StrictRedis( | |
# host=REDIS_HOST, | |
# port=REDIS_PORT, | |
# password=REDIS_PASSWORD, | |
# decode_responses=True, | |
# socket_connect_timeout=5, | |
# socket_timeout=5 | |
# ) | |
# # Test connection | |
# redis_client.ping() | |
# print(f"β Connected to local Redis: {REDIS_HOST}:{REDIS_PORT}") | |
# return redis_client | |
# except Exception as e: | |
# print(f"β Redis connection failed: {e}") | |
# raise HTTPException(status_code=500, detail=f"Redis connection failed: {str(e)}") | |
# # Initialize Redis client | |
# redis_client = get_redis_client() | |
# # Initialize models | |
# embedding_model = OpenAIEmbeddings( | |
# model="text-embedding-3-large", | |
# openai_api_key=OPENAI_API_KEY, | |
# ) | |
# qdrant_client = QdrantClient(host=QDRANT_HOST, port=QDRANT_PORT) | |
# llm = ChatOpenAI(model="gpt-4o", temperature=0, openai_api_key=OPENAI_API_KEY) | |
# # === PANDAS AI FUNCTIONS === | |
# def read_parquet_file_from_s3(ufuid=None, columns_list=None, records_count=None, file_location=''): | |
# """ | |
# Reads a Parquet file from S3 using Dask and returns it as a Pandas DataFrame. | |
# Parameters: | |
# ufuid (int): Optional user_file_upload_id to fetch S3 path from DB. | |
# columns_list (list/str): Columns to read. | |
# records_count (int): Not used currently. | |
# file_location (str): Direct file path in S3. | |
# Returns: | |
# pandas.DataFrame | |
# """ | |
# try: | |
# # Connect to PostgreSQL | |
# conn = psycopg2.connect( | |
# host=CONNECTIONS_HOST, | |
# database=CONNECTIONS_DB, | |
# user=CONNECTIONS_USER, | |
# password=CONNECTIONS_PASS | |
# ) | |
# cursor = conn.cursor() | |
# if ufuid is not None: | |
# query = """SELECT file_name, table_names FROM public.user_file_upload WHERE user_file_upload_id = %s""" | |
# cursor.execute(query, (ufuid,)) | |
# file = cursor.fetchone() | |
# if not file: | |
# raise ValueError(f"No file found for ufuid: {ufuid}") | |
# file_name, s3_file_path = file | |
# else: | |
# # Normalize input path | |
# file_location = re.sub(r'\.parquet(?!$)', '', file_location) | |
# s3_file_path = file_location if file_location.endswith('.parquet') else file_location + '.parquet' | |
# # Extract relative S3 path | |
# s3_file_path = urllib.parse.unquote(s3_file_path.split(f"{S3_Bucket_Name}/")[-1]) | |
# if not s3_file_path.endswith('.parquet'): | |
# s3_file_path += '.parquet' | |
# # Parse columns if given as comma-separated string | |
# if columns_list and not isinstance(columns_list, list): | |
# columns_list = [col.strip(' "\'') for col in columns_list.split(',')] | |
# print(f"\n{'!' * 100}\nReading from: s3://{S3_Bucket_Name}/{s3_file_path}\n") | |
# # Read using Dask | |
# ddf = dd.read_parquet( | |
# f"s3://{S3_Bucket_Name}/{s3_file_path}", | |
# engine="pyarrow", | |
# columns=columns_list, | |
# assume_missing=True | |
# ) | |
# ddf = ddf.repartition(npartitions=8) # Optimize for processing | |
# print("Reading Parquet file from S3 completed successfully.") | |
# # Close database connection | |
# cursor.close() | |
# conn.close() | |
# return ddf.compute() | |
# except Exception as e: | |
# print(f"β Error reading Parquet file: {e}") | |
# return pd.DataFrame() # Return empty DataFrame on error | |
# def pandas_agent(filepath: str, query: str) -> str: | |
# """ | |
# PandasAI agent that reads data from S3 and answers queries about the data. | |
# Parameters: | |
# filepath (str): S3 file path or ufuid | |
# query (str): Natural language query about the data | |
# Returns: | |
# str: Answer from PandasAI | |
# """ | |
# try: | |
# # Check if filepath is a number (ufuid) or a file path | |
# if filepath.isdigit(): | |
# # It's a ufuid | |
# data = read_parquet_file_from_s3(ufuid=int(filepath)) | |
# else: | |
# # It's a file path | |
# data = read_parquet_file_from_s3(file_location=filepath) | |
# if data.empty: | |
# return "β No data found or failed to load the file. Please check the file path or ufuid." | |
# # Initialize PandasAI LLM | |
# if not OPENAI_API_KEY: | |
# return "β OPENAI_API_KEY is not set in environment variables." | |
# pandas_llm = PandasOpenAI(api_token=OPENAI_API_KEY) | |
# # Create SmartDataframe | |
# sdf = SmartDataframe(data, config={"llm": pandas_llm}) | |
# # Ask the question | |
# print(f"π Processing query: {query}") | |
# result = sdf.chat(query) | |
# # Handle different types of results | |
# if isinstance(result, str): | |
# return f"π Analysis Result:\n{result}" | |
# elif isinstance(result, (pd.DataFrame, pd.Series)): | |
# return f"π Analysis Result:\n{result.to_string()}" | |
# else: | |
# return f"π Analysis Result:\n{str(result)}" | |
# except Exception as e: | |
# error_msg = f"β Error in pandas_agent: {str(e)}" | |
# print(error_msg) | |
# return error_msg | |
# # === INPUT SCHEMAS === | |
# class Query(BaseModel): | |
# message: str | |
# class ProjectRequest(BaseModel): | |
# userLoginId: int | |
# orgId: int | |
# auth_token: str | |
# class BotQuery(BaseModel): | |
# userLoginId: int | |
# orgId: int | |
# auth_token: str | |
# session_id: Optional[str] = None | |
# message: str | |
# class PandasAgentQuery(BaseModel): | |
# filepath: str = Field(..., description="S3 file path or ufuid") | |
# query: str = Field(..., description="Natural language query about the data") | |
# class SessionResponse(BaseModel): | |
# session_id: str | |
# userLoginId: int | |
# orgId: int | |
# created_at: str | |
# status: str | |
# title: Optional[str] = "New Chat" | |
# class MessageResponse(BaseModel): | |
# message_id: str | |
# session_id: str | |
# role: str # "user" or "assistant" | |
# message: str | |
# timestamp: str | |
# class ChatHistoryResponse(BaseModel): | |
# session_id: str | |
# messages: List[MessageResponse] | |
# total_messages: int | |
# # === SESSION MANAGEMENT FUNCTIONS === | |
# @app.middleware("http") | |
# async def add_success_flag(request: Request, call_next): | |
# response = await call_next(request) | |
# # Only modify JSON responses | |
# if "application/json" in response.headers.get("content-type", ""): | |
# try: | |
# body = b"".join([chunk async for chunk in response.body_iterator]) | |
# data = json.loads(body.decode()) | |
# # Add success flag | |
# data["success"] = 200 <= response.status_code < 300 | |
# # Build new JSONResponse (auto handles Content-Length) | |
# response = JSONResponse( | |
# content=data, | |
# status_code=response.status_code, | |
# headers={k: v for k, v in response.headers.items() if k.lower() != "content-length"}, | |
# ) | |
# except Exception: | |
# # fallback if response is not JSON parseable | |
# pass | |
# return response | |
# def create_session(userLoginId: int, orgId: int, auth_token: str) -> dict: | |
# """Create a new chat session""" | |
# session_id = str(uuid.uuid4()) | |
# session_data = { | |
# "session_id": session_id, | |
# "userLoginId": userLoginId, | |
# "orgId": orgId, | |
# "auth_token": auth_token, | |
# "created_at": datetime.now().isoformat(), | |
# "status": "active", | |
# "title": "New Chat" # Default title, will be updated after first message | |
# } | |
# # Store session in Redis with 24 hour TTL | |
# redis_client.setex( | |
# f"session:{session_id}", | |
# 86400, # 24 hours | |
# json.dumps(session_data) | |
# ) | |
# # Initialize empty chat history | |
# redis_client.setex( | |
# f"chat:{session_id}", | |
# 86400, # 24 hours | |
# json.dumps([]) | |
# ) | |
# # Initialize conversation memory | |
# redis_client.setex( | |
# f"memory:{session_id}", | |
# 86400, # 24 hours | |
# json.dumps([]) | |
# ) | |
# return session_data | |
# def get_session(session_id: str) -> dict: | |
# """Get session data from Redis""" | |
# session_data = redis_client.get(f"session:{session_id}") | |
# if not session_data: | |
# raise HTTPException(status_code=404, detail="Session not found or expired") | |
# return json.loads(session_data) | |
# def add_message_to_session(session_id: str, role: str, message: str) -> str: | |
# """Add message to session chat history""" | |
# message_id = str(uuid.uuid4()) | |
# message_data = { | |
# "message_id": message_id, | |
# "session_id": session_id, | |
# "role": role, | |
# "message": message, | |
# "timestamp": datetime.now().isoformat() | |
# } | |
# # Get current chat history | |
# chat_history = redis_client.get(f"chat:{session_id}") | |
# if chat_history: | |
# messages = json.loads(chat_history) | |
# else: | |
# messages = [] | |
# # Add new message | |
# messages.append(message_data) | |
# # Update chat history in Redis with extended TTL | |
# redis_client.setex( | |
# f"chat:{session_id}", | |
# 86400, # 24 hours | |
# json.dumps(messages) | |
# ) | |
# return message_id | |
# def get_session_memory(session_id: str) -> List[Dict]: | |
# """Get conversation memory for session""" | |
# memory_data = redis_client.get(f"memory:{session_id}") | |
# if memory_data: | |
# return json.loads(memory_data) | |
# return [] | |
# def update_session_memory(session_id: str, messages: List[Dict]): | |
# """Update conversation memory for session""" | |
# redis_client.setex( | |
# f"memory:{session_id}", | |
# 86400, # 24 hours | |
# json.dumps(messages) | |
# ) | |
# def update_session_title(session_id: str): | |
# """Update session title after first message""" | |
# try: | |
# # Get session data | |
# session_data = redis_client.get(f"session:{session_id}") | |
# if not session_data: | |
# return | |
# session = json.loads(session_data) | |
# # Only update if current title is "New Chat" | |
# if session.get("title", "New Chat") == "New Chat": | |
# new_title = generate_session_title(session_id) | |
# session["title"] = new_title | |
# # Update session in Redis | |
# redis_client.setex( | |
# f"session:{session_id}", | |
# 86400, # 24 hours | |
# json.dumps(session) | |
# ) | |
# except Exception as e: | |
# print(f"Error updating session title: {e}") | |
# pass # Don't fail the request if title update fails | |
# def generate_session_title(session_id: str) -> str: | |
# """Generate a title for the session based on chat history""" | |
# try: | |
# # Get chat history | |
# chat_data = redis_client.get(f"chat:{session_id}") | |
# if not chat_data: | |
# return "New Chat" | |
# messages = json.loads(chat_data) | |
# if not messages: | |
# return "New Chat" | |
# # Get first user message for title generation | |
# first_user_message = None | |
# for msg in messages: | |
# if msg["role"] == "user": | |
# first_user_message = msg["message"] | |
# break | |
# if not first_user_message: | |
# return "New Chat" | |
# # Generate title using LLM | |
# title_prompt = f"""Generate a short, descriptive title (maximum 6 words) for a chat conversation that starts with this message: | |
# "{first_user_message[:200]}" | |
# Return only the title, no quotes or additional text. The title should capture the main topic or intent of the conversation.""" | |
# try: | |
# response = llm.invoke(title_prompt) | |
# title = response.content.strip() | |
# # Clean and limit title | |
# title = title.replace('"', '').replace("'", "") | |
# if len(title) > 50: | |
# title = title[:47] + "..." | |
# return title if title else "New Chat" | |
# except Exception as e: | |
# print(f"Error generating title: {e}") | |
# # Fallback: use first few words of the message | |
# words = first_user_message.split()[:4] | |
# return " ".join(words) + ("..." if len(words) >= 4 else "") | |
# except Exception as e: | |
# print(f"Error in generate_session_title: {e}") | |
# return "New Chat" | |
# def get_user_sessions(userLoginId: int) -> List[dict]: | |
# """Get all sessions for a user with generated titles""" | |
# sessions = [] | |
# # Scan for all session keys | |
# for key in redis_client.scan_iter(match="session:*"): | |
# session_data = redis_client.get(key) | |
# if session_data: | |
# session = json.loads(session_data) | |
# if session["userLoginId"] == userLoginId: | |
# # Generate title based on chat history | |
# session["title"] = generate_session_title(session["session_id"]) | |
# sessions.append(session) | |
# # Sort sessions by created_at (most recent first) | |
# sessions.sort(key=lambda x: x["created_at"], reverse=True) | |
# return sessions | |
# def delete_session(session_id: str): | |
# """Delete session and associated data""" | |
# # Delete session data | |
# redis_client.delete(f"session:{session_id}") | |
# # Delete chat history | |
# redis_client.delete(f"chat:{session_id}") | |
# # Delete memory | |
# redis_client.delete(f"memory:{session_id}") | |
# # === UTILITY FUNCTIONS === | |
# def get_encoded_auth_token(user: int, token: str) -> str: | |
# auth_string = f"{user}:{token}" | |
# return base64.b64encode(auth_string.encode("utf-8")).decode("utf-8") | |
# def fetch_user_projects(userLoginId: int, orgId: int, auth_token: str): | |
# url = "https://japidemo.dev.ingenspark.com/fetchUserProjects" | |
# payload = { | |
# "userLoginId": userLoginId, | |
# "orgId": orgId | |
# } | |
# headers = { | |
# 'accept': 'application/json, text/plain, */*', | |
# 'authorization': f'Basic {auth_token}', | |
# 'content-type': 'application/json; charset=UTF-8' | |
# } | |
# try: | |
# response = requests.post(url, headers=headers, json=payload) | |
# response.raise_for_status() | |
# return response.json() | |
# except requests.exceptions.RequestException as e: | |
# raise HTTPException(status_code=response.status_code if 'response' in locals() else 500, | |
# detail=str(e)) | |
# def format_project_response(data: dict) -> str: | |
# my_projects = data.get("data", {}).get("Myprojects", []) | |
# other_projects = data.get("data", {}).get("Otherprojects", []) | |
# all_projects = [] | |
# for project in my_projects: | |
# all_projects.append({ | |
# "type": "Your Project", | |
# "projectNm": project["projectNm"], | |
# "projectId": project["projectId"], | |
# "created_dttm": project["created_dttm"].split('.')[0], | |
# "description": project["description"], | |
# "categoryName": project["categoryName"] | |
# }) | |
# for project in other_projects: | |
# all_projects.append({ | |
# "type": "Other Project", | |
# "projectNm": project["projectNm"], | |
# "projectId": project["projectId"], | |
# "created_dttm": project["created_dttm"].split('.')[0], | |
# "description": project["description"], | |
# "categoryName": project["categoryName"] | |
# }) | |
# if not all_projects: | |
# return "β No projects found." | |
# # Build the formatted string | |
# result = [f"β You have access to {len(all_projects)} project(s):\n"] | |
# for i, project in enumerate(all_projects, 1): | |
# result.append(f"{i}. Project Name: {project['projectNm']} ({project['type']})") | |
# result.append(f" Project ID: {project['projectId']}") | |
# result.append(f" Created On: {project['created_dttm']}") | |
# result.append(f" Description: {project['description']}") | |
# result.append(f" Category: {project['categoryName']}\n") | |
# return "\n".join(result) | |
# # === TOOL FUNCTIONS === | |
# def search_documents(query: str) -> str: | |
# """Search through ingested documents and get relevant information.""" | |
# try: | |
# # Generate embedding for the query | |
# query_vector = embedding_model.embed_query(query) | |
# # Search in Qdrant | |
# search_result = qdrant_client.search( | |
# collection_name=QDRANT_COLLECTION_NAME, | |
# query_vector=query_vector, | |
# limit=5, | |
# ) | |
# if not search_result: | |
# return "No relevant information found in the knowledge base." | |
# # Convert results to text content | |
# context_texts = [] | |
# sources = [] | |
# for hit in search_result: | |
# context_texts.append(hit.payload["text"]) | |
# sources.append(hit.payload.get("source", "unknown")) | |
# # Create a simple prompt for answering based on context | |
# context = "\n\n".join(context_texts) | |
# unique_sources = list(set(sources)) | |
# # Use the LLM directly to answer the message based on context | |
# prompt = f"""Based on the following context, answer the message: {query} | |
# Context: | |
# {context} | |
# Please provide a comprehensive answer based on the context above. If the context doesn't contain enough information to answer the message, say so clearly.""" | |
# response = llm.invoke(prompt) | |
# return f"{response.content}\n\nSources: {', '.join(unique_sources)}" | |
# except Exception as e: | |
# return f"Error searching documents: {str(e)}" | |
# # Global variables to store auth context (for tool functions) | |
# _current_user_id = None | |
# _current_org_id = None | |
# _current_auth_token = None | |
# def get_user_projects(userLoginId: str) -> str: | |
# """Get list of projects for a user.""" | |
# try: | |
# # Use global auth context if available | |
# if _current_auth_token and _current_user_id: | |
# user_id = _current_user_id | |
# org_id = _current_org_id or 1 | |
# auth_token = _current_auth_token | |
# else: | |
# return "β Authentication token required. Please provide auth_token in your request." | |
# # Encode auth token using the actual user ID and provided token | |
# encoded_token = get_encoded_auth_token(user_id, auth_token) | |
# # Fetch projects | |
# data = fetch_user_projects(user_id, org_id, encoded_token) | |
# # Format and return the project list | |
# formatted = format_project_response(data) | |
# return formatted | |
# except ValueError: | |
# return "β Invalid userLoginId format. Please provide a valid number." | |
# except Exception as e: | |
# return f"β Error fetching projects: {str(e)}" | |
# def pandas_data_analysis(query_with_filepath: str) -> str: | |
# """ | |
# Tool for data analysis using PandasAI. | |
# Input format: 'filepath|query' where filepath is S3 path or ufuid, and query is the analysis question. | |
# """ | |
# try: | |
# # Parse the input to extract filepath and query | |
# parts = query_with_filepath.split('|', 1) | |
# if len(parts) != 2: | |
# return "β Invalid input format. Please use: 'filepath|query' format." | |
# filepath, query = parts | |
# filepath = filepath.strip() | |
# query = query.strip() | |
# if not filepath or not query: | |
# return "β Both filepath and query are required." | |
# # Use the pandas_agent function | |
# result = pandas_agent(filepath, query) | |
# return result | |
# except Exception as e: | |
# return f"β Error in pandas data analysis: {str(e)}" | |
# # === CREATE TOOLS === | |
# document_search_tool = Tool( | |
# name="document_search", | |
# description="""Use this tool to search through ingested documents and get relevant information from the knowledge base. | |
# Perfect for answering messages about uploaded documents, manuals, or any content that was previously stored. | |
# Input should be a search query or message about the documents.""", | |
# func=search_documents | |
# ) | |
# project_list_tool = Tool( | |
# name="get_user_projects", | |
# description="""Use this tool to get the list of projects for a user. | |
# Perfect for when users ask about their projects, want to see available projects, or need project information. | |
# Input should be the userLoginId (e.g., '25'). | |
# Note: This tool requires authentication context to be set.""", | |
# func=get_user_projects | |
# ) | |
# pandas_analysis_tool = Tool( | |
# name="pandas_data_analysis", | |
# description="""Use this tool for data analysis on CSV/Parquet files using PandasAI. | |
# Perfect for when users ask questions about data analysis, statistics, insights, or want to query their datasets. | |
# Input format: 'filepath|query' where: | |
# - filepath: S3 file path (e.g., 'User-Uploaded-Raw-Files/Data2004csv1754926601269756') or ufuid (e.g., '123') | |
# - query: Natural language question about the data (e.g., 'What are the top 5 values?', 'Show me summary statistics') | |
# Examples: | |
# - 'User-Uploaded-Raw-Files/mydata.csv|What is this file about?' | |
# - '123|Show me the first 5 rows' | |
# - 'Modified-Files/processed_data|What are the most common values in column X?' | |
# """, | |
# func=pandas_data_analysis | |
# ) | |
# # === AGENT SETUP === | |
# def create_agent_with_session_memory(session_id: str): | |
# """Create agent with session memory from Redis""" | |
# # Get memory from Redis | |
# memory_messages = get_session_memory(session_id) | |
# agent_prompt = ChatPromptTemplate.from_messages([ | |
# ("system", """You are a helpful AI assistant with access to multiple tools and conversation memory: | |
# 1. **Document Search**: Search through uploaded documents and knowledge base | |
# 2. **Project Management**: Get list of user projects and project information | |
# 3. **Data Analysis**: Analyze CSV/Parquet files using PandasAI for insights, statistics, and queries | |
# Your capabilities: | |
# - Answer messages about documents using the document search tool | |
# - Help users find their projects and project information | |
# - Perform data analysis on uploaded datasets using natural language queries | |
# - Remember previous conversations in this session | |
# - Provide general assistance and information | |
# - Use appropriate tools based on user queries | |
# Guidelines: | |
# - Use the document search tool when users ask about specific content, documentation, or information that might be in uploaded files | |
# - Use the project tool when users ask about projects, want to see their projects, or need project-related information | |
# - Use the pandas analysis tool when users ask about data analysis, statistics, insights, or want to query datasets | |
# - For pandas analysis, you need both a filepath (S3 path or ufuid) and a query - ask for missing information if needed | |
# - Reference previous conversation context when relevant | |
# - Be clear about which tool you're using and what information you're providing | |
# - If you're unsure which tool to use, you can ask for clarification | |
# - Provide helpful, accurate, and well-formatted responses | |
# Remember: Always use the most appropriate tool based on the user's message and conversation context to provide the best possible answer."""), | |
# MessagesPlaceholder(variable_name="chat_history"), | |
# ("user", "{input}"), | |
# MessagesPlaceholder(variable_name="agent_scratchpad"), | |
# ]) | |
# # Create memory object | |
# memory = ConversationBufferMemory( | |
# memory_key="chat_history", | |
# return_messages=True | |
# ) | |
# # Load existing messages into memory | |
# for msg in memory_messages: | |
# if msg["role"] == "user": | |
# memory.chat_memory.add_user_message(msg["message"]) | |
# else: | |
# memory.chat_memory.add_ai_message(msg["message"]) | |
# # Create tools list | |
# tools = [document_search_tool, project_list_tool, pandas_analysis_tool] | |
# # Create the agent | |
# agent = create_openai_tools_agent(llm, tools, agent_prompt) | |
# # Create the agent executor with memory | |
# agent_executor = AgentExecutor( | |
# agent=agent, | |
# tools=tools, | |
# verbose=True, | |
# memory=memory | |
# ) | |
# return agent_executor, memory | |
# # === API ENDPOINTS === | |
# @app.post("/sessions", response_model=SessionResponse) | |
# def create_new_session(userLoginId: int, orgId: int, auth_token: str): | |
# """Create a new chat session""" | |
# try: | |
# session_data = create_session(userLoginId, orgId, auth_token) | |
# return SessionResponse(**session_data) | |
# except Exception as e: | |
# raise HTTPException(status_code=500, detail=f"Error creating session: {str(e)}") | |
# @app.get("/sessions") | |
# def list_user_sessions(userLoginId: int): | |
# """List all sessions for a user""" | |
# try: | |
# sessions = get_user_sessions(userLoginId) | |
# return { | |
# "userLoginId": userLoginId, | |
# "total_sessions": len(sessions), | |
# "sessions": sessions | |
# } | |
# except Exception as e: | |
# raise HTTPException(status_code=500, detail=f"Error fetching sessions: {str(e)}") | |
# @app.delete("/sessions/{session_id}") | |
# def delete_user_session(session_id: str): | |
# """Delete/close a session""" | |
# try: | |
# # Verify session exists | |
# get_session(session_id) | |
# # Delete session | |
# delete_session(session_id) | |
# return { | |
# "message": f"Session {session_id} deleted successfully", | |
# "session_id": session_id | |
# } | |
# except Exception as e: | |
# raise HTTPException(status_code=500, detail=f"Error deleting session: {str(e)}") | |
# @app.post("/bot") | |
# def chat_with_bot(query: BotQuery): | |
# """Main bot endpoint with session management""" | |
# try: | |
# # Set global auth context for tools | |
# global _current_user_id, _current_org_id, _current_auth_token | |
# _current_user_id = query.userLoginId | |
# _current_org_id = query.orgId | |
# _current_auth_token = query.auth_token | |
# session_id = query.session_id | |
# # Create new session if not provided | |
# if not session_id: | |
# session_data = create_session(query.userLoginId, query.orgId, query.auth_token) | |
# session_id = session_data["session_id"] | |
# else: | |
# # Verify existing session | |
# get_session(session_id) | |
# # Add user message to session | |
# user_message_id = add_message_to_session(session_id, "user", query.message) | |
# # Create agent with session memory | |
# agent_executor, memory = create_agent_with_session_memory(session_id) | |
# # Use the agent to process the query | |
# result = agent_executor.invoke({"input": query.message}) | |
# # Add AI response to session | |
# ai_message_id = add_message_to_session(session_id, "assistant", result["output"]) | |
# # Update session memory in Redis | |
# updated_messages = [] | |
# for message in memory.chat_memory.messages: | |
# if hasattr(message, 'content'): | |
# role = "user" if message.__class__.__name__ == "HumanMessage" else "assistant" | |
# updated_messages.append({ | |
# "role": role, | |
# "message": message.content, | |
# "timestamp": datetime.now().isoformat() | |
# }) | |
# update_session_memory(session_id, updated_messages) | |
# # Update session title after first user message | |
# update_session_title(session_id) | |
# # Clear auth context after use | |
# _current_user_id = None | |
# _current_org_id = None | |
# _current_auth_token = None | |
# return { | |
# "session_id": session_id, | |
# "user_message_id": user_message_id, | |
# "ai_message_id": ai_message_id, | |
# "message": query.message, | |
# "answer": result["output"], | |
# "userLoginId": query.userLoginId, | |
# "agent_used": True | |
# } | |
# except Exception as e: | |
# # Clear auth context on error | |
# _current_user_id = None | |
# _current_org_id = None | |
# _current_auth_token = None | |
# raise HTTPException(status_code=500, detail=f"Error processing chat: {str(e)}") | |
# @app.get("/sessions/{session_id}/history", response_model=ChatHistoryResponse) | |
# def get_session_history(session_id: str, n: int = QueryParam(50, description="Number of recent messages to return")): | |
# """Get chat history for a session""" | |
# try: | |
# # Verify session exists | |
# get_session(session_id) | |
# # Get chat history | |
# chat_data = redis_client.get(f"chat:{session_id}") | |
# if not chat_data: | |
# return ChatHistoryResponse( | |
# session_id=session_id, | |
# messages=[], | |
# total_messages=0 | |
# ) | |
# messages = json.loads(chat_data) | |
# # Get the last n messages (or all if less than n) | |
# recent_messages = messages[-n:] if len(messages) > n else messages | |
# # Convert to MessageResponse objects | |
# message_responses = [MessageResponse(**msg) for msg in recent_messages] | |
# return ChatHistoryResponse( | |
# session_id=session_id, | |
# messages=message_responses, | |
# total_messages=len(messages) | |
# ) | |
# except Exception as e: | |
# raise HTTPException(status_code=500, detail=f"Error fetching chat history: {str(e)}") | |
# @app.post("/chat-documents") | |
# def chat_documents_only(query: Query): | |
# """Direct document search without agent""" | |
# try: | |
# result = search_documents(query.message) | |
# return { | |
# "message": query.message, | |
# "answer": result, | |
# "tool_used": "document_search" | |
# } | |
# except Exception as e: | |
# return { | |
# "message": query.message, | |
# "answer": f"An error occurred: {str(e)}", | |
# "tool_used": "document_search" | |
# } | |
# @app.post("/list-projects") | |
# def list_projects(request: ProjectRequest): | |
# """Direct project listing without agent""" | |
# try: | |
# # Use the provided auth token and userLoginId | |
# encoded_token = get_encoded_auth_token(request.userLoginId, request.auth_token) | |
# # Fetch projects | |
# data = fetch_user_projects(request.userLoginId, request.orgId, encoded_token) | |
# # Format and return the project list | |
# formatted = format_project_response(data) | |
# return { | |
# "projects": formatted, | |
# "tool_used": "project_list" | |
# } | |
# except Exception as e: | |
# return { | |
# "error": f"An error occurred: {str(e)}", | |
# "tool_used": "project_list" | |
# } | |
# @app.post("/chat-with-pandas-agent") | |
# def chat_with_pandas_agent(request: PandasAgentQuery): | |
# """Direct pandas AI agent endpoint for data analysis""" | |
# try: | |
# result = pandas_agent(request.filepath, request.query) | |
# return { | |
# "filepath": request.filepath, | |
# "query": request.query, | |
# "answer": result, | |
# "tool_used": "pandas_agent", | |
# "timestamp": datetime.now().isoformat() | |
# } | |
# except Exception as e: | |
# error_msg = f"An error occurred: {str(e)}" | |
# return { | |
# "filepath": request.filepath, | |
# "query": request.query, | |
# "answer": error_msg, | |
# "tool_used": "pandas_agent", | |
# "error": True, | |
# "timestamp": datetime.now().isoformat() | |
# } | |
# @app.put("/sessions/{session_id}/title") | |
# def refresh_session_title(session_id: str): | |
# """Manually refresh/regenerate session title""" | |
# try: | |
# # Verify session exists | |
# session_data = get_session(session_id) | |
# # Generate new title | |
# new_title = generate_session_title(session_id) | |
# # Update session | |
# session_data["title"] = new_title | |
# redis_client.setex( | |
# f"session:{session_id}", | |
# 86400, # 24 hours | |
# json.dumps(session_data) | |
# ) | |
# return { | |
# "session_id": session_id, | |
# "new_title": new_title, | |
# "message": "Session title updated successfully" | |
# } | |
# except Exception as e: | |
# raise HTTPException(status_code=500, detail=f"Error updating session title: {str(e)}") | |
# @app.get("/redis-info") | |
# def redis_info(): | |
# """Get Redis connection information""" | |
# try: | |
# info = redis_client.info() | |
# return { | |
# "redis_connected": True, | |
# "redis_version": info.get("redis_version"), | |
# "used_memory": info.get("used_memory_human"), | |
# "connected_clients": info.get("connected_clients"), | |
# "total_keys": redis_client.dbsize() | |
# } | |
# except Exception as e: | |
# return { | |
# "redis_connected": False, | |
# "error": str(e) | |
# } | |
# @app.get("/health") | |
# def health(): | |
# try: | |
# redis_client.ping() | |
# redis_status = "connected" | |
# except: | |
# redis_status = "disconnected" | |
# return { | |
# "status": "ok", | |
# "tools": ["document_search", "project_list", "pandas_data_analysis"], | |
# "agent": "active", | |
# "session_management": "enabled", | |
# "redis_status": redis_status, | |
# "pandas_ai": "enabled", | |
# "total_sessions": len(list(redis_client.scan_iter(match="session:*"))) | |
# } | |
# if __name__ == "__main__": | |
# import uvicorn | |
# try: | |
# uvicorn.run(app, host="0.0.0.0", port=8000) | |
# except KeyboardInterrupt: | |
# print("\nπ Server stopped gracefully") | |
# except Exception as e: | |
# print(f"β Server error: {e}") | |
# # |