accusaga-bot / app.py_bot4,5.txt
srivatsavdamaraju's picture
Rename app.py to app.py_bot4,5.txt
4583e35 verified
from fastapi import FastAPI, HTTPException, Query as QueryParam
from pydantic import BaseModel, Field
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
from qdrant_client import QdrantClient
from langchain.agents import Tool, AgentExecutor, create_openai_tools_agent
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain.memory import ConversationBufferMemory
from typing import Optional, List, Dict, Any
import os
import warnings
import base64
import requests
from dotenv import load_dotenv
from datetime import datetime
import json
import uuid
import redis
# Pandas AI imports
import re
import urllib.parse
import pandas as pd
import dask.dataframe as dd
from math import ceil
import psycopg2
from pandasai import SmartDataframe
from pandasai.llm.openai import OpenAI as PandasOpenAI
from fastapi import FastAPI, Request
from fastapi.responses import JSONResponse
import json
# Import your existing S3 connection details
from retrive_secrects import * # CONNECTIONS_HOST, etc.
# Suppress warnings
warnings.filterwarnings("ignore", message="Qdrant client version.*is incompatible.*")
load_dotenv()
app = FastAPI(title="AI Agent with Redis Session Management and Pandas AI")
# Environment variables
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
QDRANT_COLLECTION_NAME = os.getenv("QDRANT_COLLECTION_NAME", "vatsav_test_1")
QDRANT_HOST = os.getenv("QDRANT_HOST", "127.0.0.1")
QDRANT_PORT = int(os.getenv("QDRANT_PORT", 6333))
# Redis Configuration
REDIS_URL = os.getenv("REDIS_URL")
REDIS_HOST = os.getenv("REDIS_HOST", "127.0.0.1")
REDIS_PORT = int(os.getenv("REDIS_PORT", 6379))
REDIS_PASSWORD = os.getenv("REDIS_PASSWORD")
# S3 Constants (from your original code)
S3_Bucket_Name = 'ingenspark-user-files'
S3_Raw_Files_Folder = 'User-Uploaded-Raw-Files'
S3_Modified_Files_Folder = 'Modified-Files/'
S3_Output_Files_Folder = 'Output-Files/'
S3_Published_Results_Folder = 'Published-Results/'
S3_Ingen_Customer_Output = 'Ingen-Customer/'
Dominant_Segmentation_Output = 'Dominant-Segmentation/'
Trend_Segmentation_Output = 'Trend-Segmentation/'
Decile_Quartile_segmentation_Output = 'Decile-Quartile-Segmentation/'
Combined_Segmentation_Output = 'Combine-Segmentation/'
Custom_Segmentation_Output = 'Custom-Segmentation/'
Customer_360_Output = 'Customer-360/'
Merge_file_folder = S3_Modified_Files_Folder + 'IngenData-Merged-Tables/'
S3_Dev_Doc_Images_Folder = 'Developers-Documentation-Images/'
S3_Temporary_Files_Folder = S3_Raw_Files_Folder
S3_App_Specific_Data = 'Application-Specific-Data/'
S3_Transformation_Tables_Folder = 'Modified-Files/Modified-Tables/Transformation-Tables/'
cloud_front_url = "https://files.dev.ingenspark.com/"
# Initialize Redis client
def get_redis_client():
"""Initialize Redis client with fallback to local Redis"""
try:
if REDIS_URL:
# Use deployed Redis URL
redis_client = redis.from_url(
REDIS_URL,
decode_responses=True,
socket_connect_timeout=5,
socket_timeout=5
)
# Test connection
redis_client.ping()
print(f"βœ… Connected to deployed Redis: {REDIS_URL}")
return redis_client
else:
# Use local Redis
redis_client = redis.StrictRedis(
host=REDIS_HOST,
port=REDIS_PORT,
password=REDIS_PASSWORD,
decode_responses=True,
socket_connect_timeout=5,
socket_timeout=5
)
# Test connection
redis_client.ping()
print(f"βœ… Connected to local Redis: {REDIS_HOST}:{REDIS_PORT}")
return redis_client
except Exception as e:
print(f"❌ Redis connection failed: {e}")
raise HTTPException(status_code=500, detail=f"Redis connection failed: {str(e)}")
# Initialize Redis client
redis_client = get_redis_client()
# Initialize models
embedding_model = OpenAIEmbeddings(
model="text-embedding-3-large",
openai_api_key=OPENAI_API_KEY,
)
qdrant_client = QdrantClient(host=QDRANT_HOST, port=QDRANT_PORT)
llm = ChatOpenAI(model="gpt-4o", temperature=0, openai_api_key=OPENAI_API_KEY)
# === PANDAS AI FUNCTIONS ===
def read_parquet_file_from_s3(ufuid=None, columns_list=None, records_count=None, file_location=''):
"""
Reads a Parquet file from S3 using Dask and returns it as a Pandas DataFrame.
Parameters:
ufuid (int): Optional user_file_upload_id to fetch S3 path from DB.
columns_list (list/str): Columns to read.
records_count (int): Not used currently.
file_location (str): Direct file path in S3.
Returns:
pandas.DataFrame
"""
try:
# Connect to PostgreSQL
conn = psycopg2.connect(
host=CONNECTIONS_HOST,
database=CONNECTIONS_DB,
user=CONNECTIONS_USER,
password=CONNECTIONS_PASS
)
cursor = conn.cursor()
if ufuid is not None:
query = """SELECT file_name, table_names FROM public.user_file_upload WHERE user_file_upload_id = %s"""
cursor.execute(query, (ufuid,))
file = cursor.fetchone()
if not file:
raise ValueError(f"No file found for ufuid: {ufuid}")
file_name, s3_file_path = file
else:
# Normalize input path
file_location = re.sub(r'\.parquet(?!$)', '', file_location)
s3_file_path = file_location if file_location.endswith('.parquet') else file_location + '.parquet'
# Extract relative S3 path
s3_file_path = urllib.parse.unquote(s3_file_path.split(f"{S3_Bucket_Name}/")[-1])
if not s3_file_path.endswith('.parquet'):
s3_file_path += '.parquet'
# Parse columns if given as comma-separated string
if columns_list and not isinstance(columns_list, list):
columns_list = [col.strip(' "\'') for col in columns_list.split(',')]
print(f"\n{'!' * 100}\nReading from: s3://{S3_Bucket_Name}/{s3_file_path}\n")
# Read using Dask
ddf = dd.read_parquet(
f"s3://{S3_Bucket_Name}/{s3_file_path}",
engine="pyarrow",
columns=columns_list,
assume_missing=True
)
ddf = ddf.repartition(npartitions=8) # Optimize for processing
print("Reading Parquet file from S3 completed successfully.")
# Close database connection
cursor.close()
conn.close()
return ddf.compute()
except Exception as e:
print(f"❌ Error reading Parquet file: {e}")
return pd.DataFrame() # Return empty DataFrame on error
def pandas_agent(filepath: str, query: str) -> str:
"""
PandasAI agent that reads data from S3 and answers queries about the data.
Parameters:
filepath (str): S3 file path or ufuid
query (str): Natural language query about the data
Returns:
str: Answer from PandasAI
"""
try:
# Check if filepath is a number (ufuid) or a file path
if filepath.isdigit():
# It's a ufuid
data = read_parquet_file_from_s3(ufuid=int(filepath))
else:
# It's a file path
data = read_parquet_file_from_s3(file_location=filepath)
if data.empty:
return "❌ No data found or failed to load the file. Please check the file path or ufuid."
# Initialize PandasAI LLM
if not OPENAI_API_KEY:
return "❌ OPENAI_API_KEY is not set in environment variables."
pandas_llm = PandasOpenAI(api_token=OPENAI_API_KEY)
# Create SmartDataframe
sdf = SmartDataframe(data, config={"llm": pandas_llm})
# Ask the question
print(f"πŸ” Processing query: {query}")
result = sdf.chat(query)
# Handle different types of results
if isinstance(result, str):
return f"πŸ“Š Analysis Result:\n{result}"
elif isinstance(result, (pd.DataFrame, pd.Series)):
return f"πŸ“Š Analysis Result:\n{result.to_string()}"
else:
return f"πŸ“Š Analysis Result:\n{str(result)}"
except Exception as e:
error_msg = f"❌ Error in pandas_agent: {str(e)}"
print(error_msg)
return error_msg
# === INPUT SCHEMAS ===
class Query(BaseModel):
message: str
class ProjectRequest(BaseModel):
userLoginId: int
orgId: int
auth_token: str
class BotQuery(BaseModel):
userLoginId: int
orgId: int
auth_token: str
session_id: Optional[str] = None
message: str
class PandasAgentQuery(BaseModel):
filepath: str = Field(..., description="S3 file path or ufuid")
query: str = Field(..., description="Natural language query about the data")
class SessionResponse(BaseModel):
session_id: str
userLoginId: int
orgId: int
created_at: str
status: str
title: Optional[str] = "New Chat"
class MessageResponse(BaseModel):
message_id: str
session_id: str
role: str # "user" or "assistant"
message: str
timestamp: str
class ChatHistoryResponse(BaseModel):
session_id: str
messages: List[MessageResponse]
total_messages: int
class UpdateSessionTitleRequest(BaseModel):
new_title: str
# === SESSION MANAGEMENT FUNCTIONS ===
@app.middleware("http")
async def add_success_flag(request: Request, call_next):
response = await call_next(request)
# Only modify JSON responses
if "application/json" in response.headers.get("content-type", ""):
try:
body = b"".join([chunk async for chunk in response.body_iterator])
data = json.loads(body.decode())
# Add success flag
data["success"] = 200 <= response.status_code < 300
# Build new JSONResponse (auto handles Content-Length)
response = JSONResponse(
content=data,
status_code=response.status_code,
headers={k: v for k, v in response.headers.items() if k.lower() != "content-length"},
)
except Exception:
# fallback if response is not JSON parseable
pass
return response
def create_session(userLoginId: int, orgId: int, auth_token: str) -> dict:
"""Create a new chat session"""
session_id = str(uuid.uuid4())
session_data = {
"session_id": session_id,
"userLoginId": userLoginId,
"orgId": orgId,
"auth_token": auth_token,
"created_at": datetime.now().isoformat(),
"status": "active",
"title": "New Chat" # Default title, will be updated after first message
}
# Store session in Redis with 24 hour TTL
redis_client.setex(
f"session:{session_id}",
86400, # 24 hours
json.dumps(session_data)
)
# Initialize empty chat history
redis_client.setex(
f"chat:{session_id}",
86400, # 24 hours
json.dumps([])
)
# Initialize conversation memory
redis_client.setex(
f"memory:{session_id}",
86400, # 24 hours
json.dumps([])
)
return session_data
def get_session(session_id: str) -> dict:
"""Get session data from Redis"""
session_data = redis_client.get(f"session:{session_id}")
if not session_data:
raise HTTPException(status_code=404, detail="Session not found or expired")
return json.loads(session_data)
def add_message_to_session(session_id: str, role: str, message: str) -> str:
"""Add message to session chat history"""
message_id = str(uuid.uuid4())
message_data = {
"message_id": message_id,
"session_id": session_id,
"role": role,
"message": message,
"timestamp": datetime.now().isoformat()
}
# Get current chat history
chat_history = redis_client.get(f"chat:{session_id}")
if chat_history:
messages = json.loads(chat_history)
else:
messages = []
# Add new message
messages.append(message_data)
# Update chat history in Redis with extended TTL
redis_client.setex(
f"chat:{session_id}",
86400, # 24 hours
json.dumps(messages)
)
return message_id
def get_session_memory(session_id: str) -> List[Dict]:
"""Get conversation memory for session"""
memory_data = redis_client.get(f"memory:{session_id}")
if memory_data:
return json.loads(memory_data)
return []
def update_session_memory(session_id: str, messages: List[Dict]):
"""Update conversation memory for session"""
redis_client.setex(
f"memory:{session_id}",
86400, # 24 hours
json.dumps(messages)
)
def update_session_title(session_id: str):
"""Update session title after first message"""
try:
# Get session data
session_data = redis_client.get(f"session:{session_id}")
if not session_data:
return
session = json.loads(session_data)
# Only update if current title is "New Chat"
if session.get("title", "New Chat") == "New Chat":
new_title = generate_session_title(session_id)
session["title"] = new_title
# Update session in Redis
redis_client.setex(
f"session:{session_id}",
86400, # 24 hours
json.dumps(session)
)
except Exception as e:
print(f"Error updating session title: {e}")
pass # Don't fail the request if title update fails
def generate_session_title(session_id: str) -> str:
"""Generate a title for the session based on chat history"""
try:
# Get chat history
chat_data = redis_client.get(f"chat:{session_id}")
if not chat_data:
return "New Chat"
messages = json.loads(chat_data)
if not messages:
return "New Chat"
# Get first user message for title generation
first_user_message = None
for msg in messages:
if msg["role"] == "user":
first_user_message = msg["message"]
break
if not first_user_message:
return "New Chat"
# Generate title using LLM
title_prompt = f"""Generate a short, descriptive title (maximum 6 words) for a chat conversation that starts with this message:
"{first_user_message[:200]}"
Return only the title, no quotes or additional text. The title should capture the main topic or intent of the conversation."""
try:
response = llm.invoke(title_prompt)
title = response.content.strip()
# Clean and limit title
title = title.replace('"', '').replace("'", "")
if len(title) > 50:
title = title[:47] + "..."
return title if title else "New Chat"
except Exception as e:
print(f"Error generating title: {e}")
# Fallback: use first few words of the message
words = first_user_message.split()[:4]
return " ".join(words) + ("..." if len(words) >= 4 else "")
except Exception as e:
print(f"Error in generate_session_title: {e}")
return "New Chat"
def get_user_sessions(userLoginId: int) -> List[dict]:
"""Get all sessions for a user with generated titles"""
sessions = []
# Scan for all session keys
for key in redis_client.scan_iter(match="session:*"):
session_data = redis_client.get(key)
if session_data:
session = json.loads(session_data)
if session["userLoginId"] == userLoginId:
# Generate title based on chat history
session["title"] = generate_session_title(session["session_id"])
sessions.append(session)
# Sort sessions by created_at (most recent first)
sessions.sort(key=lambda x: x["created_at"], reverse=True)
return sessions
def delete_session(session_id: str):
"""Delete session and associated data"""
# Delete session data
redis_client.delete(f"session:{session_id}")
# Delete chat history
redis_client.delete(f"chat:{session_id}")
# Delete memory
redis_client.delete(f"memory:{session_id}")
# === UTILITY FUNCTIONS ===
def get_encoded_auth_token(user: int, token: str) -> str:
auth_string = f"{user}:{token}"
return base64.b64encode(auth_string.encode("utf-8")).decode("utf-8")
def fetch_user_projects(userLoginId: int, orgId: int, auth_token: str):
url = "https://japidemo.dev.ingenspark.com/fetchUserProjects"
payload = {
"userLoginId": userLoginId,
"orgId": orgId
}
headers = {
'accept': 'application/json, text/plain, */*',
'authorization': f'Basic {auth_token}',
'content-type': 'application/json; charset=UTF-8'
}
try:
response = requests.post(url, headers=headers, json=payload)
response.raise_for_status()
return response.json()
except requests.exceptions.RequestException as e:
raise HTTPException(status_code=response.status_code if 'response' in locals() else 500,
detail=str(e))
def format_project_response(data: dict) -> str:
my_projects = data.get("data", {}).get("Myprojects", [])
other_projects = data.get("data", {}).get("Otherprojects", [])
all_projects = []
for project in my_projects:
all_projects.append({
"type": "Your Project",
"projectNm": project["projectNm"],
"projectId": project["projectId"],
"created_dttm": project["created_dttm"].split('.')[0],
"description": project["description"],
"categoryName": project["categoryName"]
})
for project in other_projects:
all_projects.append({
"type": "Other Project",
"projectNm": project["projectNm"],
"projectId": project["projectId"],
"created_dttm": project["created_dttm"].split('.')[0],
"description": project["description"],
"categoryName": project["categoryName"]
})
if not all_projects:
return "❌ No projects found."
# Build the formatted string
result = [f"βœ… You have access to {len(all_projects)} project(s):\n"]
for i, project in enumerate(all_projects, 1):
result.append(f"{i}. Project Name: {project['projectNm']} ({project['type']})")
result.append(f" Project ID: {project['projectId']}")
result.append(f" Created On: {project['created_dttm']}")
result.append(f" Description: {project['description']}")
result.append(f" Category: {project['categoryName']}\n")
return "\n".join(result)
# === TOOL FUNCTIONS ===
def search_documents(query: str) -> str:
"""Search through ingested documents and get relevant information."""
try:
# Generate embedding for the query
query_vector = embedding_model.embed_query(query)
# Search in Qdrant
search_result = qdrant_client.search(
collection_name=QDRANT_COLLECTION_NAME,
query_vector=query_vector,
limit=5,
)
if not search_result:
return "No relevant information found in the knowledge base."
# Convert results to text content
context_texts = []
sources = []
for hit in search_result:
context_texts.append(hit.payload["text"])
sources.append(hit.payload.get("source", "unknown"))
# Create a simple prompt for answering based on context
context = "\n\n".join(context_texts)
unique_sources = list(set(sources))
# Use the LLM directly to answer the message based on context
prompt = f"""Based on the following context, answer the message: {query}
Context:
{context}
Please provide a comprehensive answer based on the context above. If the context doesn't contain enough information to answer the message, say so clearly."""
response = llm.invoke(prompt)
return f"{response.content}\n\nSources: {', '.join(unique_sources)}"
except Exception as e:
return f"Error searching documents: {str(e)}"
# Global variables to store auth context (for tool functions)
_current_user_id = None
_current_org_id = None
_current_auth_token = None
def get_user_projects(userLoginId: str) -> str:
"""Get list of projects for a user."""
try:
# Use global auth context if available
if _current_auth_token and _current_user_id:
user_id = _current_user_id
org_id = _current_org_id or 1
auth_token = _current_auth_token
else:
return "❌ Authentication token required. Please provide auth_token in your request."
# Encode auth token using the actual user ID and provided token
encoded_token = get_encoded_auth_token(user_id, auth_token)
# Fetch projects
data = fetch_user_projects(user_id, org_id, encoded_token)
# Format and return the project list
formatted = format_project_response(data)
return formatted
except ValueError:
return "❌ Invalid userLoginId format. Please provide a valid number."
except Exception as e:
return f"❌ Error fetching projects: {str(e)}"
def pandas_data_analysis(query_with_filepath: str) -> str:
"""
Tool for data analysis using PandasAI.
Input format: 'filepath|query' where filepath is S3 path or ufuid, and query is the analysis question.
"""
try:
# Parse the input to extract filepath and query
parts = query_with_filepath.split('|', 1)
if len(parts) != 2:
return "❌ Invalid input format. Please use: 'filepath|query' format."
filepath, query = parts
filepath = filepath.strip()
query = query.strip()
if not filepath or not query:
return "❌ Both filepath and query are required."
# Use the pandas_agent function
result = pandas_agent(filepath, query)
return result
except Exception as e:
return f"❌ Error in pandas data analysis: {str(e)}"
# === CREATE TOOLS ===
document_search_tool = Tool(
name="document_search",
description="""Use this tool to search through ingested documents and get relevant information from the knowledge base.
Perfect for answering messages about uploaded documents, manuals, or any content that was previously stored.
Input should be a search query or message about the documents.""",
func=search_documents
)
project_list_tool = Tool(
name="get_user_projects",
description="""Use this tool to get the list of projects for a user.
Perfect for when users ask about their projects, want to see available projects, or need project information.
Input should be the userLoginId (e.g., '25').
Note: This tool requires authentication context to be set.""",
func=get_user_projects
)
pandas_analysis_tool = Tool(
name="pandas_data_analysis",
description="""Use this tool for data analysis on CSV/Parquet files using PandasAI.
Perfect for when users ask questions about data analysis, statistics, insights, or want to query their datasets.
Input format: 'filepath|query' where:
- filepath: S3 file path (e.g., 'User-Uploaded-Raw-Files/Data2004csv1754926601269756') or ufuid (e.g., '123')
- query: Natural language question about the data (e.g., 'What are the top 5 values?', 'Show me summary statistics')
Examples:
- 'User-Uploaded-Raw-Files/mydata.csv|What is this file about?'
- '123|Show me the first 5 rows'
- 'Modified-Files/processed_data|What are the most common values in column X?'
""",
func=pandas_data_analysis
)
# === AGENT SETUP ===
def create_agent_with_session_memory(session_id: str):
"""Create agent with session memory from Redis"""
# Get memory from Redis
memory_messages = get_session_memory(session_id)
agent_prompt = ChatPromptTemplate.from_messages([
("system", """You are a helpful AI assistant with access to multiple tools and conversation memory:
1. **Document Search**: Search through uploaded documents and knowledge base
2. **Project Management**: Get list of user projects and project information
3. **Data Analysis**: Analyze CSV/Parquet files using PandasAI for insights, statistics, and queries
Your capabilities:
- Answer messages about documents using the document search tool
- Help users find their projects and project information
- Perform data analysis on uploaded datasets using natural language queries
- Remember previous conversations in this session
- Provide general assistance and information
- Use appropriate tools based on user queries
Guidelines:
- Use the document search tool when users ask about specific content, documentation, or information that might be in uploaded files
- Use the project tool when users ask about projects, want to see their projects, or need project-related information
- Use the pandas analysis tool when users ask about data analysis, statistics, insights, or want to query datasets
- For pandas analysis, you need both a filepath (S3 path or ufuid) and a query - ask for missing information if needed
- Reference previous conversation context when relevant
- Be clear about which tool you're using and what information you're providing
- If you're unsure which tool to use, you can ask for clarification
- Provide helpful, accurate, and well-formatted responses
Remember: Always use the most appropriate tool based on the user's message and conversation context to provide the best possible answer."""),
MessagesPlaceholder(variable_name="chat_history"),
("user", "{input}"),
MessagesPlaceholder(variable_name="agent_scratchpad"),
])
# Create memory object
memory = ConversationBufferMemory(
memory_key="chat_history",
return_messages=True
)
# Load existing messages into memory
for msg in memory_messages:
if msg["role"] == "user":
memory.chat_memory.add_user_message(msg["message"])
else:
memory.chat_memory.add_ai_message(msg["message"])
# Create tools list
tools = [document_search_tool, project_list_tool, pandas_analysis_tool]
# Create the agent
agent = create_openai_tools_agent(llm, tools, agent_prompt)
# Create the agent executor with memory
agent_executor = AgentExecutor(
agent=agent,
tools=tools,
verbose=True,
memory=memory
)
return agent_executor, memory
# === API ENDPOINTS ===
@app.post("/sessions", response_model=SessionResponse)
def create_new_session(userLoginId: int, orgId: int, auth_token: str):
"""Create a new chat session"""
try:
session_data = create_session(userLoginId, orgId, auth_token)
return SessionResponse(**session_data)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error creating session: {str(e)}")
@app.get("/sessions")
def list_user_sessions(userLoginId: int):
"""List all sessions for a user"""
try:
sessions = get_user_sessions(userLoginId)
return {
"userLoginId": userLoginId,
"total_sessions": len(sessions),
"sessions": sessions
}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error fetching sessions: {str(e)}")
@app.delete("/sessions/{session_id}")
def delete_user_session(session_id: str):
"""Delete/close a session"""
try:
# Verify session exists
get_session(session_id)
# Delete session
delete_session(session_id)
return {
"message": f"Session {session_id} deleted successfully",
"session_id": session_id
}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error deleting session: {str(e)}")
@app.post("/bot")
def chat_with_bot(query: BotQuery):
"""Main bot endpoint with session management"""
try:
# Set global auth context for tools
global _current_user_id, _current_org_id, _current_auth_token
_current_user_id = query.userLoginId
_current_org_id = query.orgId
_current_auth_token = query.auth_token
session_id = query.session_id
# Create new session if not provided
if not session_id:
session_data = create_session(query.userLoginId, query.orgId, query.auth_token)
session_id = session_data["session_id"]
else:
# Verify existing session
get_session(session_id)
# Add user message to session
user_message_id = add_message_to_session(session_id, "user", query.message)
# Create agent with session memory
agent_executor, memory = create_agent_with_session_memory(session_id)
# Use the agent to process the query
result = agent_executor.invoke({"input": query.message})
# Add AI response to session
ai_message_id = add_message_to_session(session_id, "assistant", result["output"])
# Update session memory in Redis
updated_messages = []
for message in memory.chat_memory.messages:
if hasattr(message, 'content'):
role = "user" if message.__class__.__name__ == "HumanMessage" else "assistant"
updated_messages.append({
"role": role,
"message": message.content,
"timestamp": datetime.now().isoformat()
})
update_session_memory(session_id, updated_messages)
# Update session title after first user message
update_session_title(session_id)
# Clear auth context after use
_current_user_id = None
_current_org_id = None
_current_auth_token = None
return {
"session_id": session_id,
"user_message_id": user_message_id,
"ai_message_id": ai_message_id,
"message": query.message,
"answer": result["output"],
"userLoginId": query.userLoginId,
"agent_used": True
}
except Exception as e:
# Clear auth context on error
_current_user_id = None
_current_org_id = None
_current_auth_token = None
raise HTTPException(status_code=500, detail=f"Error processing chat: {str(e)}")
@app.get("/sessions/{session_id}/history", response_model=ChatHistoryResponse)
def get_session_history(session_id: str, n: int = QueryParam(50, description="Number of recent messages to return")):
"""Get chat history for a session"""
try:
# Verify session exists
get_session(session_id)
# Get chat history
chat_data = redis_client.get(f"chat:{session_id}")
if not chat_data:
return ChatHistoryResponse(
session_id=session_id,
messages=[],
total_messages=0
)
messages = json.loads(chat_data)
# Get the last n messages (or all if less than n)
recent_messages = messages[-n:] if len(messages) > n else messages
# Convert to MessageResponse objects
message_responses = [MessageResponse(**msg) for msg in recent_messages]
return ChatHistoryResponse(
session_id=session_id,
messages=message_responses,
total_messages=len(messages)
)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error fetching chat history: {str(e)}")
@app.put("/sessions/{session_id}/title")
def update_session_title_endpoint(session_id: str, request: UpdateSessionTitleRequest):
"""Update the title of an existing session"""
try:
# Verify that the session_id in URL matches the one in request body
if session_id != request.session_id:
raise HTTPException(status_code=400, detail="Session ID in URL and request body must match")
# Verify session exists and get current session data
session_data = redis_client.get(f"session:{session_id}")
if not session_data:
raise HTTPException(status_code=404, detail="Session not found or expired")
# Parse current session data
session = json.loads(session_data)
# Validate new title
new_title = request.new_title.strip()
if not new_title:
raise HTTPException(status_code=400, detail="New title cannot be empty")
if len(new_title) > 100:
raise HTTPException(status_code=400, detail="Title cannot exceed 100 characters")
# Update the title
old_title = session.get("title", "Unknown")
session["title"] = new_title
session["last_updated"] = datetime.now().isoformat()
# Save updated session back to Redis
redis_client.setex(
f"session:{session_id}",
86400, # 24 hours TTL
json.dumps(session)
)
return {
"message": "Session title updated successfully",
"session_id": session_id,
"old_title": old_title,
"new_title": new_title
}
except HTTPException:
raise
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error updating session title: {str(e)}")
@app.post("/chat-documents")
def chat_documents_only(query: Query):
"""Direct document search without agent"""
try:
result = search_documents(query.message)
return {
"message": query.message,
"answer": result,
"tool_used": "document_search"
}
except Exception as e:
return {
"message": query.message,
"answer": f"An error occurred: {str(e)}",
"tool_used": "document_search"
}
@app.post("/list-projects")
def list_projects(request: ProjectRequest):
"""Direct project listing without agent"""
try:
# Use the provided auth token and userLoginId
encoded_token = get_encoded_auth_token(request.userLoginId, request.auth_token)
# Fetch projects
data = fetch_user_projects(request.userLoginId, request.orgId, encoded_token)
# Format and return the project list
formatted = format_project_response(data)
return {
"projects": formatted,
"tool_used": "project_list"
}
except Exception as e:
return {
"error": f"An error occurred: {str(e)}",
"tool_used": "project_list"
}
@app.post("/chat-with-pandas-agent")
def chat_with_pandas_agent(request: PandasAgentQuery):
"""Direct pandas AI agent endpoint for data analysis"""
try:
result = pandas_agent(request.filepath, request.query)
return {
"filepath": request.filepath,
"query": request.query,
"answer": result,
"tool_used": "pandas_agent",
"timestamp": datetime.now().isoformat()
}
except Exception as e:
error_msg = f"An error occurred: {str(e)}"
return {
"filepath": request.filepath,
"query": request.query,
"answer": error_msg,
"tool_used": "pandas_agent",
"error": True,
"timestamp": datetime.now().isoformat()
}
@app.put("/sessions/{session_id}/title")
def refresh_session_title(session_id: str):
"""Manually refresh/regenerate session title"""
try:
# Verify session exists
session_data = get_session(session_id)
# Generate new title
new_title = generate_session_title(session_id)
# Update session
session_data["title"] = new_title
redis_client.setex(
f"session:{session_id}",
86400, # 24 hours
json.dumps(session_data)
)
return {
"session_id": session_id,
"new_title": new_title,
"message": "Session title updated successfully"
}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error updating session title: {str(e)}")
@app.put("/sessions/{session_id}/title")
def update_session_title_endpoint(session_id: str, request: UpdateSessionTitleRequest):
"""Update the title of an existing session with custom name"""
try:
# Verify session exists and get current session data
session_data = redis_client.get(f"session:{session_id}")
if not session_data:
raise HTTPException(status_code=404, detail="Session not found or expired")
# Parse current session data
session = json.loads(session_data)
# Validate new title
new_title = request.new_title.strip()
if not new_title:
raise HTTPException(status_code=400, detail="New title cannot be empty")
if len(new_title) > 100:
raise HTTPException(status_code=400, detail="Title cannot exceed 100 characters")
# Update the title
old_title = session.get("title", "New Chat")
session["title"] = new_title
session["last_updated"] = datetime.now().isoformat()
# Save updated session back to Redis
redis_client.setex(
f"session:{session_id}",
86400, # 24 hours TTL
json.dumps(session)
)
return {
"message": "Session title updated successfully",
"session_id": session_id,
"old_title": old_title,
"new_title": new_title
}
except HTTPException:
raise
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error updating session title: {str(e)}")# Add this to your existing Pydantic models section
class UpdateSessionTitleRequest(BaseModel):
session_id: str
new_title: str
# Add this endpoint to your FastAPI app
@app.put("/sessions/{session_id}/title")
def update_session_title_endpoint(session_id: str, request: UpdateSessionTitleRequest):
"""Update the title of an existing session"""
try:
# Verify that the session_id in URL matches the one in request body
if session_id != request.session_id:
raise HTTPException(status_code=400, detail="Session ID in URL and request body must match")
# Verify session exists and get current session data
session_data = redis_client.get(f"session:{session_id}")
if not session_data:
raise HTTPException(status_code=404, detail="Session not found or expired")
# Parse current session data
session = json.loads(session_data)
# Validate new title
new_title = request.new_title.strip()
if not new_title:
raise HTTPException(status_code=400, detail="New title cannot be empty")
if len(new_title) > 100:
raise HTTPException(status_code=400, detail="Title cannot exceed 100 characters")
# Update the title
old_title = session.get("title", "Unknown")
session["title"] = new_title
session["last_updated"] = datetime.now().isoformat()
# Save updated session back to Redis
redis_client.setex(
f"session:{session_id}",
86400, # 24 hours TTL
json.dumps(session)
)
return {
"message": "Session title updated successfully",
"session_id": session_id,
"old_title": old_title,
"new_title": new_title
}
except HTTPException:
raise
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error updating session title: {str(e)}")
@app.get("/redis-info")
def redis_info():
"""Get Redis connection information"""
try:
info = redis_client.info()
return {
"redis_connected": True,
"redis_version": info.get("redis_version"),
"used_memory": info.get("used_memory_human"),
"connected_clients": info.get("connected_clients"),
"total_keys": redis_client.dbsize()
}
except Exception as e:
return {
"redis_connected": False,
"error": str(e)
}
@app.get("/health")
def health():
try:
redis_client.ping()
redis_status = "connected"
except:
redis_status = "disconnected"
return {
"status": "ok",
"tools": ["document_search", "project_list", "pandas_data_analysis"],
"agent": "active",
"session_management": "enabled",
"redis_status": redis_status,
"pandas_ai": "enabled",
"total_sessions": len(list(redis_client.scan_iter(match="session:*")))
}
if __name__ == "__main__":
import uvicorn
try:
uvicorn.run(app, host="0.0.0.0", port=8000)
except KeyboardInterrupt:
print("\nπŸ›‘ Server stopped gracefully")
except Exception as e:
print(f"❌ Server error: {e}")
#bot4