from fastapi import FastAPI, HTTPException, Query as QueryParam, UploadFile, File, Request from fastapi.responses import JSONResponse from pydantic import BaseModel, Field from langchain_openai import ChatOpenAI, OpenAIEmbeddings from qdrant_client import QdrantClient from qdrant_client.models import VectorParams, Distance, PointStruct, Filter, SearchRequest from langchain.agents import Tool, AgentExecutor, create_openai_tools_agent from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder from langchain.memory import ConversationBufferMemory from langchain.document_loaders import PyPDFLoader, TextLoader, CSVLoader, Docx2txtLoader, BSHTMLLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from typing import Optional, List, Dict, Any import os import warnings import base64 import requests import tempfile import uuid import json import redis from dotenv import load_dotenv from datetime import datetime # Pandas AI imports import re import urllib.parse import pandas as pd import dask.dataframe as dd from math import ceil import psycopg2 from pandasai import SmartDataframe from pandasai.llm.openai import OpenAI as PandasOpenAI # Import your existing S3 connection details from retrive_secrects import * # CONNECTIONS_HOST, etc. import tempfile import json from typing import List, Dict, Any, Optional # Suppress warnings warnings.filterwarnings("ignore", message="Qdrant client version.*is incompatible.*") load_dotenv() app = FastAPI(title="Combined AI Agent with Qdrant Collections and Redis Session Management") # Environment variables OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") if not OPENAI_API_KEY: raise ValueError("❌ OPENAI_API_KEY not set in environment variables") QDRANT_COLLECTION_NAME = os.getenv("QDRANT_COLLECTION_NAME", "vatsav_test_1") # Qdrant Configuration - Using cloud instance QDRANT_API_KEY = "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJhY2Nlc3MiOiJtIiwiZXhwIjoxNzY0MTQ5OTc3fQ.l_2R-Eyb_530887EGLUkawZQamhPGVklDMlaVs0bDqo" QDRANT_URL = "https://09476415-f871-4664-9c92-2f7f17c223ee.eu-central-1-0.aws.cloud.qdrant.io" # Fallback to local Qdrant if needed QDRANT_HOST = os.getenv("QDRANT_HOST", "127.0.0.1") QDRANT_PORT = int(os.getenv("QDRANT_PORT", 6333)) # Redis Configuration REDIS_URL = os.getenv("REDIS_URL") REDIS_HOST = os.getenv("REDIS_HOST", "127.0.0.1") REDIS_PORT = int(os.getenv("REDIS_PORT", 6379)) REDIS_PASSWORD = os.getenv("REDIS_PASSWORD") # S3 Constants (from your original code) S3_Bucket_Name = 'ingenspark-user-files' S3_Raw_Files_Folder = 'User-Uploaded-Raw-Files' S3_Modified_Files_Folder = 'Modified-Files/' S3_Output_Files_Folder = 'Output-Files/' S3_Published_Results_Folder = 'Published-Results/' S3_Ingen_Customer_Output = 'Ingen-Customer/' Dominant_Segmentation_Output = 'Dominant-Segmentation/' Trend_Segmentation_Output = 'Trend-Segmentation/' Decile_Quartile_segmentation_Output = 'Decile-Quartile-Segmentation/' Combined_Segmentation_Output = 'Combine-Segmentation/' Custom_Segmentation_Output = 'Custom-Segmentation/' Customer_360_Output = 'Customer-360/' Merge_file_folder = S3_Modified_Files_Folder + 'IngenData-Merged-Tables/' S3_Dev_Doc_Images_Folder = 'Developers-Documentation-Images/' S3_Temporary_Files_Folder = S3_Raw_Files_Folder S3_App_Specific_Data = 'Application-Specific-Data/' S3_Transformation_Tables_Folder = 'Modified-Files/Modified-Tables/Transformation-Tables/' cloud_front_url = "https://files.dev.ingenspark.com/" # Initialize Qdrant client with fallback def get_qdrant_client(): """Initialize Qdrant client with fallback to local instance""" try: # Try cloud instance first client = QdrantClient( url=QDRANT_URL, api_key=QDRANT_API_KEY ) # Test connection collections = client.get_collections() print(f"✅ Connected to cloud Qdrant: {QDRANT_URL}") return client except Exception as e: print(f"⚠️ Cloud Qdrant failed: {e}, trying local...") try: # Fallback to local client = QdrantClient(host=QDRANT_HOST, port=QDRANT_PORT) client.get_collections() print(f"✅ Connected to local Qdrant: {QDRANT_HOST}:{QDRANT_PORT}") return client except Exception as e2: print(f"❌ Both Qdrant connections failed: {e2}") raise HTTPException(status_code=500, detail=f"Qdrant connection failed: {str(e2)}") # Initialize Redis client def get_redis_client(): """Initialize Redis client with fallback to local Redis""" try: if REDIS_URL: # Use deployed Redis URL redis_client = redis.from_url( REDIS_URL, decode_responses=True, socket_connect_timeout=5, socket_timeout=5 ) # Test connection redis_client.ping() print(f"✅ Connected to deployed Redis: {REDIS_URL}") return redis_client else: # Use local Redis redis_client = redis.StrictRedis( host=REDIS_HOST, port=REDIS_PORT, password=REDIS_PASSWORD, decode_responses=True, socket_connect_timeout=5, socket_timeout=5 ) # Test connection redis_client.ping() print(f"✅ Connected to local Redis: {REDIS_HOST}:{REDIS_PORT}") return redis_client except Exception as e: print(f"❌ Redis connection failed: {e}") raise HTTPException(status_code=500, detail=f"Redis connection failed: {str(e)}") # Initialize clients qdrant_client = get_qdrant_client() redis_client = get_redis_client() # Initialize models embedding_model = OpenAIEmbeddings( model="text-embedding-3-large", openai_api_key=OPENAI_API_KEY, ) llm = ChatOpenAI(model="gpt-4o", temperature=0, openai_api_key=OPENAI_API_KEY) # ------------------- MIDDLEWARE ------------------- @app.middleware("http") async def add_success_flag(request: Request, call_next): response = await call_next(request) # Only modify JSON responses if "application/json" in response.headers.get("content-type", ""): try: body = b"".join([chunk async for chunk in response.body_iterator]) data = json.loads(body.decode()) # Add success flag data["success"] = 200 <= response.status_code < 300 # Build new JSONResponse (auto handles Content-Length) response = JSONResponse( content=data, status_code=response.status_code, headers={k: v for k, v in response.headers.items() if k.lower() != "content-length"}, ) except Exception: # fallback if response is not JSON parseable pass return response # === PANDAS AI FUNCTIONS === def read_parquet_file_from_s3(ufuid=None, columns_list=None, records_count=None, file_location=''): """ Reads a Parquet file from S3 using Dask and returns it as a Pandas DataFrame. Parameters: ufuid (int): Optional user_file_upload_id to fetch S3 path from DB. columns_list (list/str): Columns to read. records_count (int): Not used currently. file_location (str): Direct file path in S3. Returns: pandas.DataFrame """ try: # Connect to PostgreSQL conn = psycopg2.connect( host=CONNECTIONS_HOST, database=CONNECTIONS_DB, user=CONNECTIONS_USER, password=CONNECTIONS_PASS ) cursor = conn.cursor() if ufuid is not None: query = """SELECT file_name, table_names FROM public.user_file_upload WHERE user_file_upload_id = %s""" cursor.execute(query, (ufuid,)) file = cursor.fetchone() if not file: raise ValueError(f"No file found for ufuid: {ufuid}") file_name, s3_file_path = file else: # Normalize input path file_location = re.sub(r'\.parquet(?!$)', '', file_location) s3_file_path = file_location if file_location.endswith('.parquet') else file_location + '.parquet' # Extract relative S3 path s3_file_path = urllib.parse.unquote(s3_file_path.split(f"{S3_Bucket_Name}/")[-1]) if not s3_file_path.endswith('.parquet'): s3_file_path += '.parquet' # Parse columns if given as comma-separated string if columns_list and not isinstance(columns_list, list): columns_list = [col.strip(' "\'') for col in columns_list.split(',')] print(f"\n{'!' * 100}\nReading from: s3://{S3_Bucket_Name}/{s3_file_path}\n") # Read using Dask ddf = dd.read_parquet( f"s3://{S3_Bucket_Name}/{s3_file_path}", engine="pyarrow", columns=columns_list, assume_missing=True ) ddf = ddf.repartition(npartitions=8) # Optimize for processing print("Reading Parquet file from S3 completed successfully.") # Close database connection cursor.close() conn.close() return ddf.compute() except Exception as e: print(f"❌ Error reading Parquet file: {e}") return pd.DataFrame() # Return empty DataFrame on error def pandas_agent(filepath: str, query: str) -> str: """ PandasAI agent that reads data from S3 and answers queries about the data. Parameters: filepath (str): S3 file path or ufuid query (str): Natural language query about the data Returns: str: Answer from PandasAI """ try: # Check if filepath is a number (ufuid) or a file path if filepath.isdigit(): # It's a ufuid data = read_parquet_file_from_s3(ufuid=int(filepath)) else: # It's a file path data = read_parquet_file_from_s3(file_location=filepath) if data.empty: return "❌ No data found or failed to load the file. Please check the file path or ufuid." # Initialize PandasAI LLM if not OPENAI_API_KEY: return "❌ OPENAI_API_KEY is not set in environment variables." pandas_llm = PandasOpenAI(api_token=OPENAI_API_KEY) # Create SmartDataframe sdf = SmartDataframe(data, config={"llm": pandas_llm}) # Ask the question print(f"🔍 Processing query: {query}") result = sdf.chat(query) # Handle different types of results if isinstance(result, str): return f"📊 Analysis Result:\n{result}" elif isinstance(result, (pd.DataFrame, pd.Series)): return f"📊 Analysis Result:\n{result.to_string()}" else: return f"📊 Analysis Result:\n{str(result)}" except Exception as e: error_msg = f"❌ Error in pandas_agent: {str(e)}" print(error_msg) return error_msg # === INPUT SCHEMAS === # Add these new Pydantic models after the existing schemas class DatasetInfoRequest(BaseModel): userLoginId: int orgId: int project_id: int auth_token: str class DatasetInfoResponse(BaseModel): project_id: int dataset_info: Dict[str, Any] ingestion_status: Optional[str] = None # Chat and Session Schemas class Query(BaseModel): message: str class ProjectRequest(BaseModel): userLoginId: int orgId: int auth_token: str class BotQuery(BaseModel): userLoginId: int orgId: int auth_token: str session_id: Optional[str] = None message: str class PandasAgentQuery(BaseModel): filepath: str = Field(..., description="S3 file path or ufuid") query: str = Field(..., description="Natural language query about the data") class SessionResponse(BaseModel): session_id: str userLoginId: int orgId: int created_at: str status: str title: Optional[str] = "New Chat" class MessageResponse(BaseModel): message_id: str session_id: str role: str # "user" or "assistant" message: str timestamp: str class ChatHistoryResponse(BaseModel): session_id: str messages: List[MessageResponse] total_messages: int class UpdateSessionTitleRequest(BaseModel): new_title: str # Qdrant Collection Schemas class CollectionRequest(BaseModel): name: str vector_size: int distance: str = "Cosine" # Cosine, Euclid, Dot class UpdateCollectionRequest(BaseModel): vector_size: int | None = None distance: str | None = None # === SESSION MANAGEMENT FUNCTIONS === def should_ingest_data(user_login_id: int) -> bool: """Check if data should be ingested based on number of sessions.""" try: response = requests.get(f"http://127.0.0.1:8000/sessions?userLoginId={user_login_id}") if response.status_code == 200: data = response.json() return data.get("total_sessions", 0) <= 0 else: print(f"Failed to fetch sessions: {response.status_code}") return False except Exception as e: print(f"Error checking session count: {e}") return False #_________________________file_ingestion_services___________________________________ def create_session(userLoginId: int, orgId: int, auth_token: str) -> dict: """Create a new chat session""" session_id = str(uuid.uuid4()) session_data = { "session_id": session_id, "userLoginId": userLoginId, "orgId": orgId, "auth_token": auth_token, "created_at": datetime.now().isoformat(), "status": "active", "title": "New Chat" # Default title, will be updated after first message } # Store session in Redis with 24 hour TTL redis_client.setex( f"session:{session_id}", 86400, # 24 hours json.dumps(session_data) ) # Initialize empty chat history redis_client.setex( f"chat:{session_id}", 86400, # 24 hours json.dumps([]) ) # Initialize conversation memory redis_client.setex( f"memory:{session_id}", 86400, # 24 hours json.dumps([]) ) return session_data def get_session(session_id: str) -> dict: """Get session data from Redis""" session_data = redis_client.get(f"session:{session_id}") if not session_data: raise HTTPException(status_code=404, detail="Session not found or expired") return json.loads(session_data) def add_message_to_session(session_id: str, role: str, message: str) -> str: """Add message to session chat history""" message_id = str(uuid.uuid4()) message_data = { "message_id": message_id, "session_id": session_id, "role": role, "message": message, "timestamp": datetime.now().isoformat() } # Get current chat history chat_history = redis_client.get(f"chat:{session_id}") if chat_history: messages = json.loads(chat_history) else: messages = [] # Add new message messages.append(message_data) # Update chat history in Redis with extended TTL redis_client.setex( f"chat:{session_id}", 86400, # 24 hours json.dumps(messages) ) return message_id def get_session_memory(session_id: str) -> List[Dict]: """Get conversation memory for session""" memory_data = redis_client.get(f"memory:{session_id}") if memory_data: return json.loads(memory_data) return [] def update_session_memory(session_id: str, messages: List[Dict]): """Update conversation memory for session""" redis_client.setex( f"memory:{session_id}", 86400, # 24 hours json.dumps(messages) ) def update_session_title(session_id: str): """Update session title after first message""" try: # Get session data session_data = redis_client.get(f"session:{session_id}") if not session_data: return session = json.loads(session_data) # Only update if current title is "New Chat" if session.get("title", "New Chat") == "New Chat": new_title = generate_session_title(session_id) session["title"] = new_title # Update session in Redis redis_client.setex( f"session:{session_id}", 86400, # 24 hours json.dumps(session) ) except Exception as e: print(f"Error updating session title: {e}") pass # Don't fail the request if title update fails def generate_session_title(session_id: str) -> str: """Generate and optionally save a title for the session based on chat history""" try: # Check session session_data = redis_client.get(f"session:{session_id}") if session_data: session = json.loads(session_data) if "user_title" in session: # Don't override user-defined titles return session["user_title"] # Get chat history chat_data = redis_client.get(f"chat:{session_id}") if not chat_data: return "New Chat" messages = json.loads(chat_data) if not messages: return "New Chat" first_user_message = next( (msg["message"] for msg in messages if msg["role"] == "user"), None ) if not first_user_message: return "New Chat" # Generate title with LLM title_prompt = f"""Generate a short, descriptive title (maximum 6 words) for a chat conversation that starts with this message: "{first_user_message[:200]}" Return only the title, no quotes or additional text. The title should capture the main topic or intent of the conversation.""" try: response = llm.invoke(title_prompt) title = response.content.strip().replace('"', '').replace("'", "") if len(title) > 50: title = title[:47] + "..." except Exception as e: print(f"Error generating title with LLM: {e}") # Fallback title words = first_user_message.split()[:4] title = " ".join(words) + ("..." if len(words) >= 4 else "") # Save to session if session_data: session["generated_title"] = title if not session.get("user_title"): session["title"] = title # Only if no user title redis_client.setex(f"session:{session_id}", 86400, json.dumps(session)) return title except Exception as e: print(f"Error in generate_session_title: {e}") return "New Chat" def get_user_sessions(userLoginId: int) -> List[dict]: """Get all sessions for a user with generated titles""" sessions = [] # Scan for all session keys for key in redis_client.scan_iter(match="session:*"): session_data = redis_client.get(key) if session_data: session = json.loads(session_data) if session["userLoginId"] == userLoginId: # Generate title based on chat history session["title"] = generate_session_title(session["session_id"]) sessions.append(session) # Sort sessions by created_at (most recent first) sessions.sort(key=lambda x: x["created_at"], reverse=True) return sessions def delete_session(session_id: str): """Delete session and associated data""" # Delete session data redis_client.delete(f"session:{session_id}") # Delete chat history redis_client.delete(f"chat:{session_id}") # Delete memory redis_client.delete(f"memory:{session_id}") # === UTILITY FUNCTIONS === def get_encoded_auth_token(user: int, token: str) -> str: auth_string = f"{user}:{token}" return base64.b64encode(auth_string.encode("utf-8")).decode("utf-8") def fetch_user_projects(userLoginId: int, orgId: int, auth_token: str): url = "https://japidemo.dev.ingenspark.com/fetchUserProjects" payload = { "userLoginId": userLoginId, "orgId": orgId } headers = { 'accept': 'application/json, text/plain, */*', 'authorization': f'Basic {auth_token}', 'content-type': 'application/json; charset=UTF-8' } try: response = requests.post(url, headers=headers, json=payload) response.raise_for_status() return response.json() except requests.exceptions.RequestException as e: raise HTTPException(status_code=response.status_code if 'response' in locals() else 500, detail=str(e)) def format_project_response(data: dict) -> str: my_projects = data.get("data", {}).get("Myprojects", []) other_projects = data.get("data", {}).get("Otherprojects", []) all_projects = [] for project in my_projects: all_projects.append({ "type": "Your Project", "projectNm": project["projectNm"], "projectId": project["projectId"], "created_dttm": project["created_dttm"].split('.')[0], "description": project["description"], "categoryName": project["categoryName"] }) for project in other_projects: all_projects.append({ "type": "Other Project", "projectNm": project["projectNm"], "projectId": project["projectId"], "created_dttm": project["created_dttm"].split('.')[0], "description": project["description"], "categoryName": project["categoryName"] }) if not all_projects: return "❌ No projects found." # Build the formatted string result = [f"✅ You have access to {len(all_projects)} project(s):\n"] for i, project in enumerate(all_projects, 1): result.append(f"{i}. Project Name: {project['projectNm']} ({project['type']})") result.append(f" Project ID: {project['projectId']}") result.append(f" Created On: {project['created_dttm']}") result.append(f" Description: {project['description']}") result.append(f" Category: {project['categoryName']}\n") return "\n".join(result) # === TOOL FUNCTIONS === # def search_documents(query: str) -> str: # """Search through ingested documents and get relevant information.""" # try: # # Generate embedding for the query # query_vector = embedding_model.embed_query(query) # # Search in Qdrant # search_result = qdrant_client.search( # collection_name=QDRANT_COLLECTION_NAME, # query_vector=query_vector, # limit=5, # ) # if not search_result: # return "No relevant information found in the knowledge base." # # Convert results to text content # context_texts = [] # sources = [] # for hit in search_result: # context_texts.append(hit.payload["text"]) # sources.append(hit.payload.get("source", "unknown")) # # Create a simple prompt for answering based on context # context = "\n\n".join(context_texts) # unique_sources = list(set(sources)) # # Use the LLM directly to answer the message based on context # prompt = f"""Based on the following context, answer the message: {query} # Context: # {context} # Please provide a comprehensive answer based on the context above. If the context doesn't contain enough information to answer the message, say so clearly.""" # response = llm.invoke(prompt) # return f"{response.content}\n\nSources: {', '.join(unique_sources)}" # except Exception as e: # return f"Error searching documents: {str(e)}" import requests def search_documents(query: str) -> str: collection_name = 9 # As per the URL path in your curl example top_k = 5 # Default value, as shown in the curl url = f"https://srivatsavdamaraju-accusaga-bot.hf.space/search/{collection_name}" params = { "query": query, "top_k": top_k } headers = { "accept": "application/json" } response = requests.get(url, params=params, headers=headers) if response.status_code == 200: return response.text # or response.json() if you want to work with structured data else: return f"Error {response.status_code}: {response.text}" # Global variables to store auth context (for tool functions) _current_user_id = None _current_org_id = None _current_auth_token = None def get_user_projects(userLoginId: str) -> str: """Get list of projects for a user.""" try: # Use global auth context if available if _current_auth_token and _current_user_id: user_id = _current_user_id org_id = _current_org_id or 1 auth_token = _current_auth_token else: return "❌ Authentication token required. Please provide auth_token in your request." # Encode auth token using the actual user ID and provided token encoded_token = get_encoded_auth_token(user_id, auth_token) # Fetch projects data = fetch_user_projects(user_id, org_id, encoded_token) # Format and return the project list formatted = format_project_response(data) return formatted except ValueError: return "❌ Invalid userLoginId format. Please provide a valid number." except Exception as e: return f"❌ Error fetching projects: {str(e)}" # def pandas_data_analysis(query_with_filepath: str) -> str: # """ # Tool for data analysis using PandasAI. # Input format: 'filepath|query' where filepath is S3 path or ufuid, and query is the analysis question. # """ # try: # # Parse the input to extract filepath and query # parts = query_with_filepath.split('|', 1) # if len(parts) != 2: # return "❌ Invalid input format. Please use: 'filepath|query' format." # filepath, query = parts # filepath = filepath.strip() # query = query.strip() # if not filepath or not query: # return "❌ Both filepath and query are required." # # Use the pandas_agent function # result = pandas_agent(filepath, query) # return result # except Exception as e: # return f"❌ Error in pandas data analysis: {str(e)}" def get_dataset_info(userLoginId: int, orgId: int, project_id: int, user: str, token: str): """ Fetch dataset info from the API. """ # Encode auth token auth_token = get_encoded_auth_token(user, token) url = f"https://papidemo.dev.ingenspark.com/get_dataset_info?user_login_id={userLoginId}&project_id={project_id}" headers = { 'accept': 'application/json, text/plain, */*', 'authorization': f'Basic {auth_token}', 'content-type': 'application/json; charset=utf-8', 'origin': 'https://demo-app.dev.ingenspark.com', 'referer': 'https://demo-app.dev.ingenspark.com/', 'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/139.0.0.0 Safari/537.36', } try: response = requests.get(url, headers=headers) response.raise_for_status() return response.json() except requests.exceptions.RequestException as e: return {"error": str(e)} except ValueError: return {"error": "Invalid JSON response", "text": response.text} def check_and_create_user_collection(userLoginId: int) -> bool: """ Check if a collection named `userLoginId` exists. If not, create the collection. Returns True if collection exists or created successfully, False otherwise. """ try: # Get all collections collections = qdrant_client.get_collections() collection_names = [col.name for col in collections.collections] collection_name = str(userLoginId) if collection_name in collection_names: print(f"Collection '{collection_name}' already exists") return True else: print(f"Creating new collection for user {userLoginId}...") # Create collection with standard parameters qdrant_client.recreate_collection( collection_name=collection_name, vectors_config=VectorParams(size=3072, distance=Distance.COSINE), ) print(f"Collection '{collection_name}' created successfully") return True except Exception as e: print(f"Error managing collection for user {userLoginId}: {str(e)}") return False def ingest_datasets_to_collection(collection_name: str, datasets_data: Dict[str, Any]) -> bool: """ Ingest datasets information to a user's collection. """ try: # Convert datasets data to a formatted text for ingestion datasets_text = json.dumps(datasets_data, indent=2, ensure_ascii=False) # Create a temporary file with the datasets information with tempfile.NamedTemporaryFile(mode='w', suffix='.txt', delete=False, encoding='utf-8') as tmp_file: tmp_file.write(f"Dataset Information Summary\n") tmp_file.write("=" * 50 + "\n\n") tmp_file.write(datasets_text) tmp_file_path = tmp_file.name try: # Load the temporary file loader = TextLoader(tmp_file_path, encoding='utf-8') docs = loader.load() # Split into chunks splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100) chunks = splitter.split_documents(docs) texts = [chunk.page_content for chunk in chunks] # Generate embeddings embeddings = embedding_model.embed_documents(texts) # Create points for Qdrant points = [ PointStruct( id=str(uuid.uuid4()), vector=embeddings[i], payload={ "text": texts[i], "source": "dataset_info", "type": "dataset_summary" }, ) for i in range(len(texts)) ] # Upsert to Qdrant qdrant_client.upsert(collection_name=collection_name, points=points) print(f"Successfully ingested dataset information to collection '{collection_name}'") return True finally: # Clean up temporary file os.unlink(tmp_file_path) except Exception as e: print(f"Error ingesting datasets to collection {collection_name}: {str(e)}") return False def fetch_and_ingest_user_datasets(userLoginId: int, orgId: int, auth_token: str) -> Dict[str, Any]: """ Fetch all user projects and their datasets, then ingest to user's collection. """ try: # Step 1: Ensure user collection exists collection_created = check_and_create_user_collection(userLoginId) if not collection_created: return { "success": False, "message": "Failed to create/verify user collection", "datasets": {} } # Step 2: Fetch user projects encoded_token = get_encoded_auth_token(userLoginId, auth_token) projects_data = fetch_user_projects(userLoginId, orgId, encoded_token) # Step 3: Extract project IDs project_ids = [] for proj in projects_data.get("data", {}).get("Myprojects", []): project_ids.append(proj["projectId"]) for proj in projects_data.get("data", {}).get("Otherprojects", []): project_ids.append(proj["projectId"]) # Step 4: Fetch dataset info for each project all_datasets = {} for project_id in project_ids: dataset_info = get_dataset_info(userLoginId, orgId, project_id, userLoginId, auth_token) all_datasets[str(project_id)] = dataset_info # Step 5: Ingest datasets to user's collection ingestion_success = ingest_datasets_to_collection(str(userLoginId), all_datasets) return { "success": True, "collection_name": str(userLoginId), "projects_found": len(project_ids), "datasets": all_datasets, "ingestion_success": ingestion_success, "message": f"Successfully processed {len(project_ids)} projects and {'ingested' if ingestion_success else 'failed to ingest'} dataset information" } except Exception as e: return { "success": False, "message": f"Error processing user datasets: {str(e)}", "datasets": {} } def get_user_datasets(userLoginId_str: str) -> str: """ Tool to fetch user datasets and ingest them into user's collection. This tool automatically manages collections and dataset ingestion. """ try: # Use global auth context if not _current_auth_token or not _current_user_id or not _current_org_id: return "Authentication context required. Please provide auth_token in your request." userLoginId = int(userLoginId_str) if userLoginId_str.isdigit() else _current_user_id orgId = _current_org_id auth_token = _current_auth_token # Fetch and process datasets result = fetch_and_ingest_user_datasets(userLoginId, orgId, auth_token) if result["success"]: datasets_count = len(result["datasets"]) return f"""✅ Dataset Management Complete: 📊 Found {result['projects_found']} projects with dataset information 📁 Collection '{result['collection_name']}' ready 💾 Ingestion Status: {'Success' if result['ingestion_success'] else 'Failed'} Dataset Summary: {json.dumps(result['datasets'], indent=2) if datasets_count > 0 else 'No datasets found'} You can now search through your datasets using document search queries!""" else: return f"❌ Error: {result['message']}" except ValueError: return "❌ Invalid userLoginId format. Please provide a valid number." except Exception as e: return f"❌ Error managing user datasets: {str(e)}" import os import re import urllib.parse import psycopg2 import pandas as pd from langchain_openai import ChatOpenAI from langchain_experimental.agents import create_pandas_dataframe_agent from retrive_secrects import * # PostgreSQL and other secrets # Constants S3_Bucket_Name = 'ingenspark-user-files' def read_parquet_file_from_s3(file_location): """ Reads a Parquet file from S3 using pandas and returns it as a DataFrame. Args: file_location (str): S3-relative path to the Parquet file. Returns: pd.DataFrame """ # Normalize and clean path file_location = re.sub(r'\.parquet(?!$)', '', file_location) s3_file_path = file_location if file_location.endswith('.parquet') else file_location + '.parquet' # Extract relative S3 path s3_file_path = s3_file_path.split(f"{S3_Bucket_Name}/")[-1] s3_file_path = urllib.parse.unquote(s3_file_path) if not s3_file_path.endswith('.parquet'): s3_file_path += '.parquet' s3_url = f"s3://{S3_Bucket_Name}/{s3_file_path}" print(f"\n🔹 Reading from S3: {s3_url}\n") # Read Parquet file using pandas df = pd.read_parquet(s3_url, engine='pyarrow') return df def pandas_ai(input_text: str, api_key: str = None, model: str = "gpt-4") -> str: """ Parses the input string to extract the S3 path and user query, reads the data, and answers the query using LLM. Args: input_text (str): Input in the format "S3_path , natural language question" api_key (str): OpenAI API key (or read from env) model (str): OpenAI model to use (default: gpt-4) Returns: str: Answer from the LLM """ try: # Split input into S3 path and question parts = input_text.split(",", 1) if len(parts) != 2: raise ValueError("Input must be in the format: , ") file_path = parts[0].strip() user_query = parts[1].strip() # Get OpenAI key openai_key = api_key or os.getenv("OPENAI_API_KEY") if not openai_key: raise ValueError("OpenAI API key must be provided or set in environment variable 'OPENAI_API_KEY'.") # Read DataFrame from S3 df = read_parquet_file_from_s3(file_location=file_path) # Initialize OpenAI LLM llm = ChatOpenAI( temperature=0, model=model, openai_api_key=openai_key ) # Create LangChain agent agent_executor = create_pandas_dataframe_agent( llm=llm, df=df, agent_type="tool-calling", verbose=False, handle_parsing_errors=True, include_df_in_prompt=True, number_of_head_rows=5, allow_dangerous_code=True ) # Ask the question result = agent_executor.invoke({"input": user_query}) return result["output"] except Exception as e: return f"❌ Error: {str(e)}" # =============== Example Usage =============== # if __name__ == "__main__": # user_input = input("Enter your input (format: , ):\n") # answer = pandas_ai(user_input) # print("\n📊 Answer:\n", answer) # === CREATE TOOLS === dataset_management_tool = Tool( name="manage_user_datasets", description="""Use this tool to automatically fetch user datasets and set up their personal collection. This tool will: 1. Create a user-specific collection if it doesn't exist 2. Fetch all user projects and their dataset information 3. Ingest the dataset information into the user's collection for searching Perfect for when users want to: - Set up their dataset collection - Refresh their dataset information - Prepare their datasets for searching and analysis Input should be the userLoginId (e.g., '25') or leave empty to use current user. Note: This tool requires authentication context to be set.""", func=get_user_datasets ) document_search_tool = Tool( name="document_search", description="""Use this tool to search through ingested documents and get relevant information from the knowledge base. Perfect for answering messages about uploaded documents, manuals, or any content that was previously stored. Input should be a search query or message about the documents.""", func=search_documents ) project_list_tool = Tool( name="get_user_projects", description="""Use this tool to get the list of projects for a user. Perfect for when users ask about their projects, want to see available projects, or need project information. Input should be the userLoginId (e.g., '25'). Note: This tool requires authentication context to be set.""", func=get_user_projects ) pandas_analysis_tool = Tool( name="pandas_data_analysis", description="""Use this tool for data analysis on CSV/Parquet files using PandasAI. Perfect for when users ask questions about data analysis, statistics, insights, or want to query their datasets. Input format: 'filepath, query' where: - filepath: S3 file path (e.g., 'User-Uploaded-Raw-Files/Data2004csv1754926601269756') or ufuid (e.g., '123') - query: Natural language question about the data (e.g., 'What are the top 5 values?', 'Show me summary statistics') Examples: - 'User-Uploaded-Raw-Files/mydata.csv, What is this file about?' - '123, Show me the first 5 rows' - 'Modified-Files/processed_data, What are the most common values in column X?' """, func=pandas_ai ) # === AGENT SETUP === # def create_agent_with_session_memory(session_id: str): # """Create agent with session memory from Redis""" # # Get memory from Redis # memory_messages = get_session_memory(session_id) # agent_prompt = ChatPromptTemplate.from_messages([ # ("system", """You are a helpful AI assistant with access to multiple tools and conversation memory: # 1. **Document Search**: Search through uploaded documents and knowledge base # 2. **Project Management**: Get list of user projects and project information # 3. **Data Analysis**: Analyze CSV/Parquet files using PandasAI for insights, statistics, and queries # Your capabilities: # - Answer messages about documents using the document search tool # - Help users find their projects and project information # - Perform data analysis on uploaded datasets using natural language queries # - Remember previous conversations in this session # - Provide general assistance and information # - Use appropriate tools based on user queries # Guidelines: # - Use the document search tool when users ask about specific content, documentation, or information that might be in uploaded files # - Use the project tool when users ask about projects, want to see their projects, or need project-related information # - Use the pandas analysis tool when users ask about data analysis, statistics, insights, or want to query datasets # - For pandas analysis, you need both a filepath (S3 path or ufuid) and a query - ask for missing information if needed # - Reference previous conversation context when relevant # - Be clear about which tool you're using and what information you're providing # - If you're unsure which tool to use, you can ask for clarification # - Provide helpful, accurate, and well-formatted responses # Remember: Always use the most appropriate tool based on the user's message and conversation context to provide the best possible answer."""), # MessagesPlaceholder(variable_name="chat_history"), # ("user", "{input}"), # MessagesPlaceholder(variable_name="agent_scratchpad"), # ]) # # Create memory object # memory = ConversationBufferMemory( # memory_key="chat_history", # return_messages=True # ) # # Load existing messages into memory # for msg in memory_messages: # if msg["role"] == "user": # memory.chat_memory.add_user_message(msg["message"]) # else: # memory.chat_memory.add_ai_message(msg["message"]) # # Create tools list # tools = [document_search_tool, project_list_tool, pandas_analysis_tool] # # Create the agent # agent = create_openai_tools_agent(llm, tools, agent_prompt) # # Create the agent executor with memory # agent_executor = AgentExecutor( # agent=agent, # tools=tools, # verbose=True, # memory=memory # ) # return agent_executor, memory #Update the create_agent_with_session_memory function to include the new tool def create_agent_with_session_memory(session_id: str): """Create agent with session memory from Redis - Updated with dataset management""" # Get memory from Redis memory_messages = get_session_memory(session_id) agent_prompt = ChatPromptTemplate.from_messages([ ("system", """You are a helpful AI assistant with access to multiple tools and conversation memory: 1. **Document Search**: Search through uploaded documents and user's dataset knowledge base 2. **Project Management**: Get list of user projects and project information 3. **Data Analysis**: Analyze CSV/Parquet files using PandasAI for insights, statistics, and queries 4. **Dataset Management**: Automatically fetch and organize user datasets into searchable collections Your capabilities: - Answer questions about documents using the document search tool - Help users find their projects and project information - Perform data analysis on uploaded datasets using natural language queries - Automatically manage user datasets and make them searchable - Remember previous conversations in this session - Provide general assistance and information Guidelines: - Use the document search tool when users ask about specific content, documentation, or dataset information - Use the project tool when users ask about projects, want to see their projects, or need project-related information - Use the pandas analysis tool when users ask about data analysis, statistics, insights, or want to query specific datasets - Use the dataset management tool when users want to set up their datasets for searching, or refresh their dataset collection - For pandas analysis, you need both a filepath (S3 path or ufuid) and a query - ask for missing information if needed - The dataset management tool automatically creates user collections and ingests their dataset information - Reference previous conversation context when relevant - Be clear about which tool you're using and what information you're providing - If you're unsure which tool to use, you can ask for clarification - Provide helpful, accurate, and well-formatted responses Dataset Management Flow: 1. When users first interact or ask about their datasets, suggest using dataset management to set up their collection 2. After dataset management completes, users can search their datasets using document search 3. For specific data analysis, direct them to use pandas analysis with specific file paths Remember: Always use the most appropriate tool based on the user's query and conversation context to provide the best possible answer."""), MessagesPlaceholder(variable_name="chat_history"), ("user", "{input}"), MessagesPlaceholder(variable_name="agent_scratchpad"), ]) # Create memory object memory = ConversationBufferMemory( memory_key="chat_history", return_messages=True ) # Load existing messages into memory for msg in memory_messages: if msg["role"] == "user": memory.chat_memory.add_user_message(msg["message"]) else: memory.chat_memory.add_ai_message(msg["message"]) # Create tools list - Updated with dataset management tool tools = [document_search_tool, project_list_tool, pandas_analysis_tool, dataset_management_tool] # Create the agent agent = create_openai_tools_agent(llm, tools, agent_prompt) # Create the agent executor with memory agent_executor = AgentExecutor( agent=agent, tools=tools, verbose=True, memory=memory ) return agent_executor, memory # ------------------- COLLECTION CRUD ENDPOINTS ------------------- @app.post("/collections/") def create_collection(req: CollectionRequest): """Create a new Qdrant collection""" distance_map = { "Cosine": Distance.COSINE, "Euclid": Distance.EUCLID, "Dot": Distance.DOT, } if req.distance not in distance_map: raise HTTPException(status_code=400, detail="Invalid distance metric") try: qdrant_client.recreate_collection( collection_name=req.name, vectors_config=VectorParams(size=req.vector_size, distance=distance_map[req.distance]), ) return {"message": f"✅ Collection '{req.name}' created successfully"} except Exception as e: raise HTTPException(status_code=500, detail=str(e)) @app.get("/collections/") def list_collections(): """List all Qdrant collections""" try: collections = qdrant_client.get_collections() return collections.dict() except Exception as e: raise HTTPException(status_code=500, detail=str(e)) @app.get("/collections/{name}") def get_collection(name: str): """Get information about a specific collection""" try: collection_info = qdrant_client.get_collection(collection_name=name) return collection_info.dict() except Exception as e: raise HTTPException(status_code=404, detail=f"Collection '{name}' not found: {str(e)}") @app.put("/collections/{name}") def update_collection(name: str, req: UpdateCollectionRequest): """Update a collection's configuration""" distance_map = { "Cosine": Distance.COSINE, "Euclid": Distance.EUCLID, "Dot": Distance.DOT, } try: current = qdrant_client.get_collection(name) vector_size = req.vector_size if req.vector_size else current.config.params.vectors.size distance = distance_map[req.distance] if req.distance else current.config.params.vectors.distance qdrant_client.recreate_collection( collection_name=name, vectors_config=VectorParams(size=vector_size, distance=distance), ) return {"message": f"♻️ Collection '{name}' updated successfully"} except Exception as e: raise HTTPException(status_code=500, detail=str(e)) @app.delete("/collections/{name}") def delete_collection(name: str): """Delete a collection""" try: qdrant_client.delete_collection(collection_name=name) return {"message": f"🗑️ Collection '{name}' deleted successfully"} except Exception as e: raise HTTPException(status_code=404, detail=f"Collection '{name}' not found: {str(e)}") # ------------------- INGESTION ENDPOINTS ------------------- @app.post("/ingest/{collection_name}") async def ingest_file(collection_name: str, file: UploadFile = File(...)): """Ingest a file into a Qdrant collection""" suffix = os.path.splitext(file.filename)[-1].lower() with tempfile.NamedTemporaryFile(delete=False, suffix=suffix) as tmp: tmp.write(await file.read()) tmp_path = tmp.name try: # Select loader based on file suffix if suffix == ".pdf": loader = PyPDFLoader(tmp_path) elif suffix in [".txt", ".md"]: loader = TextLoader(tmp_path) elif suffix == ".csv": loader = CSVLoader(file_path=tmp_path) elif suffix == ".docx": loader = Docx2txtLoader(tmp_path) elif suffix == ".html": loader = BSHTMLLoader(file_path=tmp_path) else: raise HTTPException(status_code=400, detail=f"❌ Unsupported file type: {suffix}") docs = loader.load() splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50) chunks = splitter.split_documents(docs) texts = [chunk.page_content for chunk in chunks] # Embed documents synchronously (OpenAIEmbeddings is sync) embeddings = embedding_model.embed_documents(texts) # Verify embedding dimension matches collection config collection_info = qdrant_client.get_collection(collection_name=collection_name) expected_dim = collection_info.config.params.vectors.size if len(embeddings[0]) != expected_dim: raise HTTPException( status_code=400, detail=f"Embedding dimension mismatch: expected {expected_dim}, got {len(embeddings[0])}", ) points = [ PointStruct( id=str(uuid.uuid4()), vector=embeddings[i], payload={"text": texts[i], "source": file.filename}, ) for i in range(len(texts)) ] qdrant_client.upsert(collection_name=collection_name, points=points) except HTTPException as he: raise he # re-raise HTTP exceptions directly except Exception as e: raise HTTPException(status_code=500, detail=f"Ingestion failed: {str(e)}") finally: os.remove(tmp_path) return {"message": f"📄 '{file.filename}' ingested into '{collection_name}' successfully"} @app.get("/search/{collection_name}") def search_collection( collection_name: str, query: str = QueryParam(..., description="Your question or search query"), top_k: int = 5 ): """Search within a specific collection""" try: # Generate embedding for the query query_vector = embedding_model.embed_query(query) # Perform similarity search in Qdrant search_result = qdrant_client.search( collection_name=collection_name, query_vector=query_vector, limit=top_k, ) # Format results results = [ { "score": hit.score, "payload": hit.payload, } for hit in search_result ] return { "query": query, "collection": collection_name, "results": results, } except Exception as e: raise HTTPException(status_code=500, detail=f"Search failed: {str(e)}") # === SESSION MANAGEMENT ENDPOINTS === @app.post("/sessions", response_model=SessionResponse) def create_new_session(userLoginId: int, orgId: int, auth_token: str): """Create a new chat session""" try: session_data = create_session(userLoginId, orgId, auth_token) return SessionResponse(**session_data) except Exception as e: raise HTTPException(status_code=500, detail=f"Error creating session: {str(e)}") @app.get("/sessions") def list_user_sessions(userLoginId: int): """List all sessions for a user""" try: sessions = get_user_sessions(userLoginId) return { "userLoginId": userLoginId, "total_sessions": len(sessions), "sessions": sessions } except Exception as e: raise HTTPException(status_code=500, detail=f"Error fetching sessions: {str(e)}") @app.delete("/sessions/{session_id}") def delete_user_session(session_id: str): """Delete/close a session""" try: # Verify session exists get_session(session_id) # Delete session delete_session(session_id) return { "message": f"Session {session_id} deleted successfully", "session_id": session_id } except Exception as e: raise HTTPException(status_code=500, detail=f"Error deleting session: {str(e)}") @app.get("/sessions/{session_id}/history", response_model=ChatHistoryResponse) def get_session_history(session_id: str, n: int = QueryParam(50, description="Number of recent messages to return")): """Get chat history for a session""" try: # Verify session exists get_session(session_id) # Get chat history chat_data = redis_client.get(f"chat:{session_id}") if not chat_data: return ChatHistoryResponse( session_id=session_id, messages=[], total_messages=0 ) messages = json.loads(chat_data) # Get the last n messages (or all if less than n) recent_messages = messages[-n:] if len(messages) > n else messages # Convert to MessageResponse objects message_responses = [MessageResponse(**msg) for msg in recent_messages] return ChatHistoryResponse( session_id=session_id, messages=message_responses, total_messages=len(messages) ) except Exception as e: raise HTTPException(status_code=500, detail=f"Error fetching chat history: {str(e)}") @app.put("/sessions/{session_id}/title") def update_session_title_endpoint(session_id: str, request: UpdateSessionTitleRequest): """Update the user-defined title of an existing session""" try: session_data = redis_client.get(f"session:{session_id}") if not session_data: raise HTTPException(status_code=404, detail="Session not found or expired") session = json.loads(session_data) new_title = request.new_title.strip() if not new_title: raise HTTPException(status_code=400, detail="New title cannot be empty") if len(new_title) > 100: raise HTTPException(status_code=400, detail="Title cannot exceed 100 characters") old_title = session.get("title", "New Chat") session["user_title"] = new_title session["title"] = new_title # Effective title = user-defined session["last_updated"] = datetime.now().isoformat() redis_client.setex(f"session:{session_id}", 86400, json.dumps(session)) return { "message": "Session title updated successfully", "session_id": session_id, "old_title": old_title, "new_title": new_title } except HTTPException: raise except Exception as e: raise HTTPException(status_code=500, detail=f"Error updating session title: {str(e)}") @app.put("/sessions/{session_id}/refresh-title") def refresh_session_title(session_id: str): """Manually refresh/regenerate session title""" try: # Verify session exists session_data = get_session(session_id) # Generate new title new_title = generate_session_title(session_id) # Update session session_data["title"] = new_title redis_client.setex( f"session:{session_id}", 86400, # 24 hours json.dumps(session_data) ) return { "session_id": session_id, "new_title": new_title, "message": "Session title updated successfully" } except Exception as e: raise HTTPException(status_code=500, detail=f"Error updating session title: {str(e)}") #_____________data injestion ___________________________ import base64 import json import requests from fastapi import HTTPException def get_encoded_auth_token(user: int, token: str) -> str: auth_string = f"{user}:{token}" return base64.b64encode(auth_string.encode("utf-8")).decode("utf-8") def get_dataset_info(userLoginId: int, orgId: int, project_id: int, user: str, token: str): auth_token = get_encoded_auth_token(user, token) url = f"https://papidemo.dev.ingenspark.com/get_dataset_info?user_login_id={userLoginId}&project_id={project_id}" headers = { 'accept': 'application/json, text/plain, */*', 'authorization': f'Basic {auth_token}', 'content-type': 'application/json; charset=utf-8', 'origin': 'https://demo-app.dev.ingenspark.com', 'referer': 'https://demo-app.dev.ingenspark.com/', 'user-agent': 'Mozilla/5.0' } try: response = requests.get(url, headers=headers) response.raise_for_status() return response.json() except requests.exceptions.RequestException as e: return {"error": str(e)} except ValueError: return {"error": "Invalid JSON response", "text": response.text} def fetch_user_projects(userLoginId: int, orgId: int, auth_token: str): url = "https://japidemo.dev.ingenspark.com/fetchUserProjects" payload = {"userLoginId": userLoginId, "orgId": orgId} headers = { 'accept': 'application/json, text/plain, */*', 'authorization': f'Basic {auth_token}', 'content-type': 'application/json; charset=UTF-8' } try: response = requests.post(url, headers=headers, json=payload) response.raise_for_status() return response.json() except requests.exceptions.RequestException as e: raise HTTPException(status_code=response.status_code if 'response' in locals() else 500, detail=str(e)) def format_project_response(data: dict) -> str: my_projects = data.get("data", {}).get("Myprojects", []) other_projects = data.get("data", {}).get("Otherprojects", []) all_projects = [] for project in my_projects + other_projects: all_projects.append({ "type": "Your Project" if project in my_projects else "Other Project", "projectNm": project["projectNm"], "projectId": project["projectId"], "created_dttm": project["created_dttm"].split('.')[0], "description": project["description"], "categoryName": project["categoryName"] }) if not all_projects: return "❌ No projects found." result = [f"✅ You have access to {len(all_projects)} project(s):\n"] for i, project in enumerate(all_projects, 1): result.append(f"{i}. Project Name: {project['projectNm']} ({project['type']})") result.append(f" Project ID: {project['projectId']}") result.append(f" Created On: {project['created_dttm']}") result.append(f" Description: {project['description']}") result.append(f" Category: {project['categoryName']}\n") return "\n".join(result) def save_to_txt(data: dict, filename: str = "datasets_summary.txt"): with open(filename, "w", encoding="utf-8") as f: json.dump(data, f, indent=4, ensure_ascii=False) print(f"✅ Dataset info saved to {filename}") def check_and_create_collection(userLoginId: str, base_url="https://srivatsavdamaraju-accusaga-bot.hf.space") -> bool: get_url = f"{base_url}/collections/" headers = {'accept': 'application/json'} try: response = requests.get(get_url, headers=headers) response.raise_for_status() data = response.json() collections = data if isinstance(data, list) else data.get("collections", []) collection_names = [coll.get("name") for coll in collections if isinstance(coll, dict)] if str(userLoginId) in collection_names: print(f"Collection named '{userLoginId}' found.") return True else: print("Collection not found. Creating a new one...") post_data = { "name": str(userLoginId), "vector_size": 3072, "distance": "Cosine" } post_response = requests.post(get_url, headers={ 'accept': 'application/json', 'Content-Type': 'application/json' }, json=post_data) post_response.raise_for_status() print(f"✅ Collection created: {post_response.json()}") return True except requests.exceptions.RequestException as e: print(f"Error calling collection API: {e}") return False def ingest_file_to_collection(collection_name: str, file_path: str, base_url="https://srivatsavdamaraju-accusaga-bot.hf.space") -> bool: url = f"{base_url}/ingest/{collection_name}" headers = {'accept': 'application/json'} try: with open(file_path, 'rb') as f: files = {'file': (file_path, f, 'text/plain')} response = requests.post(url, headers=headers, files=files) response.raise_for_status() print(f"✅ File '{file_path}' ingested into '{collection_name}'.") print("Response:", response.json()) return True except FileNotFoundError: print(f"❌ File not found: {file_path}") except requests.exceptions.HTTPError as http_err: print(f"❌ HTTP error: {http_err}") print("Response content:", response.text) except requests.exceptions.RequestException as e: print(f"❌ Request exception: {e}") return False # === MAIN CHAT AND AGENT ENDPOINTS === @app.post("/bot") def chat_with_bot(query: BotQuery): """Main bot endpoint with session management and agent tools""" try: # Set global auth context for tools global _current_user_id, _current_org_id, _current_auth_token _current_user_id = query.userLoginId _current_org_id = query.orgId _current_auth_token = query.auth_token session_id = query.session_id # Create new session if not provided if not session_id: session_data = create_session(query.userLoginId, query.orgId, query.auth_token) session_id = session_data["session_id"] else: # Verify existing session get_session(session_id) file_path = "datasets_summary.txt" # The file created earlier with dataset info # Step 1: Check/create collection success = check_and_create_collection(_current_user_id) # Step 2: If collection ready, ingest the file # Only ingest if user has <= 1 session if success: if should_ingest_data(_current_user_id): print("User has 1 or fewer sessions. Ingesting data...") ingest_file_to_collection(_current_user_id, file_path) else: print("User has more than 1 session. Skipping ingestion.") else: print("Could not create or find the collection. Aborting ingestion.") # Add user message to session user_message_id = add_message_to_session(session_id, "user", query.message) # Create agent with session memory agent_executor, memory = create_agent_with_session_memory(session_id) # Use the agent to process the query result = agent_executor.invoke({"input": query.message}) # Add AI response to session ai_message_id = add_message_to_session(session_id, "assistant", result["output"]) # Update session memory in Redis updated_messages = [] for message in memory.chat_memory.messages: if hasattr(message, 'content'): role = "user" if message.__class__.__name__ == "HumanMessage" else "assistant" updated_messages.append({ "role": role, "message": message.content, "timestamp": datetime.now().isoformat() }) update_session_memory(session_id, updated_messages) # Update session title after first user message update_session_title(session_id) # Clear auth context after use _current_user_id = None _current_org_id = None _current_auth_token = None return { "session_id": session_id, "user_message_id": user_message_id, "ai_message_id": ai_message_id, "message": query.message, "answer": result["output"], "userLoginId": query.userLoginId, "agent_used": True } except Exception as e: # Clear auth context on error _current_user_id = None _current_org_id = None _current_auth_token = None raise HTTPException(status_code=500, detail=f"Error processing chat: {str(e)}") # === DIRECT TOOL ENDPOINTS === @app.post("/chat-documents") def chat_documents_only(query: Query): """Direct document search without agent""" try: result = search_documents(query.message) return { "message": query.message, "answer": result, "tool_used": "document_search" } except Exception as e: return { "message": query.message, "answer": f"An error occurred: {str(e)}", "tool_used": "document_search" } @app.post("/list-projects") def list_projects(request: ProjectRequest): """Direct project listing without agent""" try: # Use the provided auth token and userLoginId encoded_token = get_encoded_auth_token(request.userLoginId, request.auth_token) # Fetch projects data = fetch_user_projects(request.userLoginId, request.orgId, encoded_token) # Format and return the project list formatted = format_project_response(data) return { "projects": formatted, "tool_used": "project_list" } except Exception as e: return { "error": f"An error occurred: {str(e)}", "tool_used": "project_list" } @app.post("/chat-with-pandas-agent") def chat_with_pandas_agent(request: PandasAgentQuery): """Direct pandas AI agent endpoint for data analysis""" try: result = pandas_agent(request.filepath, request.query) return { "filepath": request.filepath, "query": request.query, "answer": result, "tool_used": "pandas_agent", "timestamp": datetime.now().isoformat() } except Exception as e: error_msg = f"An error occurred: {str(e)}" return { "filepath": request.filepath, "query": request.query, "answer": error_msg, "tool_used": "pandas_agent", "error": True, "timestamp": datetime.now().isoformat() } @app.delete("/delete_user_completely/{user_login_id}") def delete_user_completely(user_login_id: int): BASE_URL = "https://srivatsavdamaraju-accusaga-bot.hf.space" headers = { "accept": "application/json" } # Step 1: Delete Collection collection_url = f"{BASE_URL}/collections/{user_login_id}" collection_response = requests.delete(collection_url, headers=headers) if collection_response.status_code != 200: raise HTTPException( status_code=collection_response.status_code, detail=f"Failed to delete collection. Response: {collection_response.text}" ) # Step 2: Get Sessions sessions_url = f"{BASE_URL}/sessions?userLoginId={user_login_id}" sessions_response = requests.get(sessions_url, headers=headers) if sessions_response.status_code != 200: raise HTTPException( status_code=sessions_response.status_code, detail=f"Failed to fetch sessions. Response: {sessions_response.text}" ) sessions_data = sessions_response.json() sessions = sessions_data.get("sessions", []) deleted_sessions = [] failed_sessions = [] # Step 3: Delete Each Session for session in sessions: session_id = session["session_id"] delete_session_url = f"{BASE_URL}/sessions/{session_id}" delete_session_response = requests.delete(delete_session_url, headers=headers) if delete_session_response.status_code == 200: deleted_sessions.append(session_id) else: failed_sessions.append({ "session_id": session_id, "status_code": delete_session_response.status_code, "error": delete_session_response.text }) return { "user_login_id": user_login_id, "collection_deleted": True, "deleted_sessions": deleted_sessions, "failed_sessions": failed_sessions } # === SYSTEM INFORMATION ENDPOINTS === @app.get("/redis-info") def redis_info(): """Get Redis connection information""" try: info = redis_client.info() return { "redis_connected": True, "redis_version": info.get("redis_version"), "used_memory": info.get("used_memory_human"), "connected_clients": info.get("connected_clients"), "total_keys": redis_client.dbsize() } except Exception as e: return { "redis_connected": False, "error": str(e) } @app.get("/qdrant-info") def qdrant_info(): """Get Qdrant connection information""" try: collections = qdrant_client.get_collections() return { "qdrant_connected": True, "total_collections": len(collections.collections), "collections": [col.name for col in collections.collections] } except Exception as e: return { "qdrant_connected": False, "error": str(e) } @app.post("/fetch-dataset-info") def fetch_dataset_info_endpoint(request: DatasetInfoRequest): """Direct endpoint to fetch dataset info for a specific project""" try: dataset_info = get_dataset_info( request.userLoginId, request.orgId, request.project_id, request.userLoginId, request.auth_token ) return DatasetInfoResponse( project_id=request.project_id, dataset_info=dataset_info ) except Exception as e: raise HTTPException(status_code=500, detail=f"Error fetching dataset info: {str(e)}") @app.post("/setup-user-datasets") def setup_user_datasets_endpoint(request: ProjectRequest): """Direct endpoint to set up user datasets and collection""" try: result = fetch_and_ingest_user_datasets( request.userLoginId, request.orgId, request.auth_token ) return { "userLoginId": request.userLoginId, "collection_name": str(request.userLoginId), **result } except Exception as e: raise HTTPException(status_code=500, detail=f"Error setting up user datasets: {str(e)}") @app.get("/health") def health(): """System health check - Updated""" try: redis_client.ping() redis_status = "connected" except: redis_status = "disconnected" try: qdrant_client.get_collections() qdrant_status = "connected" except: qdrant_status = "disconnected" return { "status": "ok", "tools": ["document_search", "project_list", "pandas_data_analysis", "dataset_management"], "agent": "active", "session_management": "enabled", "dataset_management": "enabled", "redis_status": redis_status, "qdrant_status": qdrant_status, "pandas_ai": "enabled", "total_sessions": len(list(redis_client.scan_iter(match="session:*"))) if redis_status == "connected" else 0, "collections_available": qdrant_status == "connected" } if __name__ == "__main__": import uvicorn try: uvicorn.run(app) except KeyboardInterrupt: print("\n🛑 Server stopped gracefully") except Exception as e: print(f"❌ Server error: {e}") #bot10.py