File size: 13,353 Bytes
12faaae 8a1304d 12faaae 8a1304d 12faaae 8a1304d 12faaae 8a1304d 12faaae 8a1304d 12faaae 8a1304d 12faaae 8a1304d 12faaae 8a1304d 12faaae 8a1304d 12faaae 8a1304d 12faaae 8a1304d 12faaae 8a1304d 12faaae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoConfig
import torch
import numpy as np
import logging
class PaperClassifier:
# Available models with their configurations
AVAILABLE_MODELS = {
'distilbert': {
'name': 'distilbert-base-cased',
'max_length': 512,
'description': 'Lightweight and fast model, good for testing',
'force_slow': False,
'tokenizer_class': None # Use default
},
'deberta-v3': {
'name': 'microsoft/deberta-v3-base',
'max_length': 512,
'description': 'Advanced model with better performance',
'force_slow': True, # Force slow tokenizer for DeBERTa
'tokenizer_class': 'DebertaV2TokenizerFast' # Specify tokenizer class
},
't5': {
'name': 'google/t5-v1_1-base',
'max_length': 512,
'description': 'Versatile text-to-text model',
'force_slow': False
},
'roberta': {
'name': 'roberta-base',
'max_length': 512,
'description': 'Advanced model with strong performance',
'force_slow': False,
'tokenizer_class': None # Use default
},
'scibert': {
'name': 'allenai/scibert_scivocab_uncased',
'max_length': 512,
'description': 'Specialized for scientific text',
'force_slow': False,
'tokenizer_class': None # Use default
},
'bert': {
'name': 'bert-base-uncased',
'max_length': 512,
'description': 'Classic BERT model, good all-round performance',
'force_slow': False,
'tokenizer_class': None # Use default
}
}
def __init__(self, model_type='distilbert'):
"""
Initialize the classifier with a specific model type
Args:
model_type (str): One of 'distilbert', 'deberta-v3', 't5', 'roberta', 'scibert'
"""
if model_type not in self.AVAILABLE_MODELS:
raise ValueError(f"Model type must be one of {list(self.AVAILABLE_MODELS.keys())}")
self.model_type = model_type
self.model_config = self.AVAILABLE_MODELS[model_type]
self.model_name = self.model_config['name']
# ArXiv main categories with descriptions
self.categories = [
"cs", # Computer Science
"math", # Mathematics
"physics", # Physics
"q-bio", # Quantitative Biology
"q-fin", # Quantitative Finance
"stat", # Statistics
"eess", # Electrical Engineering and Systems Science
"econ" # Economics
]
# Human readable category names
self.category_names = {
"cs": "Computer Science",
"math": "Mathematics",
"physics": "Physics",
"q-bio": "Biology",
"q-fin": "Finance",
"stat": "Statistics",
"eess": "Electrical Engineering",
"econ": "Economics"
}
# Initialize tokenizer with proper error handling
self._initialize_tokenizer()
# Initialize model with proper error handling
self._initialize_model()
# Print model info
print(f"Initialized {model_type} model: {self.model_name}")
print(f"Description: {self.model_config['description']}")
print("Note: This model needs to be fine-tuned on ArXiv data for accurate predictions.")
def _initialize_tokenizer(self):
"""Initialize the tokenizer with proper error handling"""
try:
# First try loading the tokenizer configuration
config = AutoConfig.from_pretrained(self.model_name)
# Try loading the tokenizer with specific class if specified
if self.model_config['tokenizer_class']:
from transformers import DebertaV2TokenizerFast
self.tokenizer = DebertaV2TokenizerFast.from_pretrained(
self.model_name,
model_max_length=self.model_config['max_length']
)
else:
# Try loading with AutoTokenizer
self.tokenizer = AutoTokenizer.from_pretrained(
self.model_name,
model_max_length=self.model_config['max_length'],
use_fast=not self.model_config['force_slow'],
trust_remote_code=True
)
print(f"Successfully initialized tokenizer for {self.model_type}")
except Exception as e:
print(f"Error initializing tokenizer: {str(e)}")
print("Falling back to basic tokenizer...")
# Try one more time with minimal settings
try:
self.tokenizer = AutoTokenizer.from_pretrained(
self.model_name,
use_fast=False,
trust_remote_code=True
)
except Exception as e:
# If all else fails, try using BERT tokenizer as last resort
print("Falling back to BERT tokenizer...")
self.tokenizer = AutoTokenizer.from_pretrained(
'bert-base-uncased',
model_max_length=self.model_config['max_length']
)
def _initialize_model(self):
"""Initialize the model with proper error handling"""
try:
self.model = AutoModelForSequenceClassification.from_pretrained(
self.model_name,
num_labels=len(self.categories),
id2label={i: label for i, label in enumerate(self.categories)},
label2id={label: i for i, label in enumerate(self.categories)},
trust_remote_code=True # Allow custom code from hub
)
except Exception as e:
raise RuntimeError(f"Failed to initialize model: {str(e)}")
@classmethod
def list_available_models(cls):
"""List all available models with their descriptions"""
print("Available models:")
for model_type, config in cls.AVAILABLE_MODELS.items():
print(f"\n{model_type}:")
print(f" Model: {config['name']}")
print(f" Description: {config['description']}")
def preprocess_text(self, title, abstract=None):
"""
Preprocess title and abstract
Args:
title (str): Paper title
abstract (str, optional): Paper abstract
"""
if abstract:
text = f"Title: {title}\nAbstract: {abstract}"
else:
text = f"Title: {title}"
max_length = self.model_config['max_length']
if self.model_type == 't5':
text = "classify: " + text
return text[:max_length]
def get_top_categories(self, probabilities, threshold=0.95):
"""
Get top categories that sum up to the threshold
Args:
probabilities (torch.Tensor): Model predictions
threshold (float): Probability threshold (default: 0.95)
Returns:
list: List of (category, probability) tuples
"""
# Convert to numpy for easier manipulation
probs = probabilities.numpy()
# Sort indices by probability
sorted_indices = np.argsort(probs)[::-1]
# Calculate cumulative sum
cumsum = np.cumsum(probs[sorted_indices])
# Find how many categories we need to reach the threshold
mask = cumsum <= threshold
if not any(mask): # If first probability is already > threshold
mask[0] = True
# Get the selected indices
selected_indices = sorted_indices[mask]
# Return categories and their probabilities
return [
{
'category': self.category_names.get(self.categories[idx], self.categories[idx]),
'arxiv_category': self.categories[idx],
'probability': float(probs[idx])
}
for idx in selected_indices
]
def classify_paper(self, title, abstract=None):
"""
Classify a paper based on its title and optional abstract
Args:
title (str): Paper title
abstract (str, optional): Paper abstract
"""
# Preprocess the text
processed_text = self.preprocess_text(title, abstract)
# Tokenize
inputs = self.tokenizer(
processed_text,
return_tensors="pt",
truncation=True,
max_length=self.model_config['max_length'],
padding=True
)
# Get model predictions
with torch.no_grad():
outputs = self.model(**inputs)
predictions = torch.softmax(outputs.logits, dim=1)[0]
# Get top categories that sum to 95% probability
top_categories = self.get_top_categories(predictions)
# Return predictions
return {
'top_categories': top_categories,
'model_used': self.model_type,
'input_type': 'title_and_abstract' if abstract else 'title_only'
}
def train_on_arxiv(self, train_texts, train_labels, validation_texts=None, validation_labels=None,
epochs=3, batch_size=16, learning_rate=2e-5):
"""
Function to fine-tune the model on ArXiv data
Args:
train_texts (list): List of paper texts (title + abstract)
train_labels (list): List of corresponding ArXiv categories
validation_texts (list, optional): Validation texts
validation_labels (list, optional): Validation labels
epochs (int): Number of training epochs
batch_size (int): Training batch size
learning_rate (float): Learning rate for training
"""
from transformers import TrainingArguments, Trainer
import datasets
# Prepare datasets
train_encodings = self.tokenizer(
train_texts,
truncation=True,
padding=True,
max_length=self.model_config['max_length']
)
# Convert labels to ids
train_label_ids = [self.categories.index(label) for label in train_labels]
# Create training dataset
train_dataset = datasets.Dataset.from_dict({
'input_ids': train_encodings['input_ids'],
'attention_mask': train_encodings['attention_mask'],
'labels': train_label_ids
})
# Create validation dataset if provided
if validation_texts and validation_labels:
val_encodings = self.tokenizer(
validation_texts,
truncation=True,
padding=True,
max_length=self.model_config['max_length']
)
val_label_ids = [self.categories.index(label) for label in validation_labels]
validation_dataset = datasets.Dataset.from_dict({
'input_ids': val_encodings['input_ids'],
'attention_mask': val_encodings['attention_mask'],
'labels': val_label_ids
})
else:
validation_dataset = None
# Training arguments
training_args = TrainingArguments(
output_dir=f"./results_{self.model_type}",
num_train_epochs=epochs,
per_device_train_batch_size=batch_size,
per_device_eval_batch_size=batch_size,
warmup_steps=500,
weight_decay=0.01,
logging_dir=f"./logs_{self.model_type}",
logging_steps=10,
learning_rate=learning_rate,
evaluation_strategy="epoch" if validation_dataset else "no",
save_strategy="epoch",
load_best_model_at_end=True if validation_dataset else False,
)
# Initialize trainer
trainer = Trainer(
model=self.model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=validation_dataset,
)
# Train the model
trainer.train()
# Save the fine-tuned model
save_dir = f"./fine_tuned_{self.model_type}"
self.model.save_pretrained(save_dir)
self.tokenizer.save_pretrained(save_dir)
print(f"Model saved to {save_dir}")
@classmethod
def load_fine_tuned(cls, model_type, model_path):
"""
Load a fine-tuned model from disk
Args:
model_type (str): The type of model that was fine-tuned
model_path (str): Path to the saved model
"""
classifier = cls(model_type)
classifier.model = AutoModelForSequenceClassification.from_pretrained(model_path)
classifier.tokenizer = AutoTokenizer.from_pretrained(model_path)
return classifier |