Spaces:
Running
on
L4
Running
on
L4
import os | |
import numpy as np | |
import torch | |
import torchvision.transforms.functional as torchvision_F | |
from PIL import Image | |
from transparent_background import Remover | |
import spar3d.models.utils as spar3d_utils | |
def get_device(): | |
if os.environ.get("SPAR3D_USE_CPU", "0") == "1": | |
return "cpu" | |
device = "cpu" | |
if torch.cuda.is_available(): | |
device = "cuda" | |
elif torch.backends.mps.is_available(): | |
device = "mps" | |
return device | |
def create_intrinsic_from_fov_rad(fov_rad: float, cond_height: int, cond_width: int): | |
intrinsic = spar3d_utils.get_intrinsic_from_fov( | |
fov_rad, | |
H=cond_height, | |
W=cond_width, | |
) | |
intrinsic_normed_cond = intrinsic.clone() | |
intrinsic_normed_cond[..., 0, 2] /= cond_width | |
intrinsic_normed_cond[..., 1, 2] /= cond_height | |
intrinsic_normed_cond[..., 0, 0] /= cond_width | |
intrinsic_normed_cond[..., 1, 1] /= cond_height | |
return intrinsic, intrinsic_normed_cond | |
def create_intrinsic_from_fov_deg(fov_deg: float, cond_height: int, cond_width: int): | |
return create_intrinsic_from_fov_rad(np.deg2rad(fov_deg), cond_height, cond_width) | |
def default_cond_c2w(distance: float): | |
c2w_cond = torch.as_tensor( | |
[ | |
[0, 0, 1, distance], | |
[1, 0, 0, 0], | |
[0, 1, 0, 0], | |
[0, 0, 0, 1], | |
] | |
).float() | |
return c2w_cond | |
def normalize_pc_bbox(pc, scale=1.0): | |
# get the bounding box of the mesh | |
assert len(pc.shape) in [2, 3] and pc.shape[-1] in [3, 6, 9] | |
n_dim = len(pc.shape) | |
device = pc.device | |
pc = pc.cpu() | |
if n_dim == 2: | |
pc = pc.unsqueeze(0) | |
normalize_pc = [] | |
for b in range(pc.shape[0]): | |
xyz = pc[b, :, :3] # [N, 3] | |
bound_x = (xyz[:, 0].max(), xyz[:, 0].min()) | |
bound_y = (xyz[:, 1].max(), xyz[:, 1].min()) | |
bound_z = (xyz[:, 2].max(), xyz[:, 2].min()) | |
# get the center of the bounding box | |
center = np.array( | |
[ | |
(bound_x[0] + bound_x[1]) / 2, | |
(bound_y[0] + bound_y[1]) / 2, | |
(bound_z[0] + bound_z[1]) / 2, | |
] | |
) | |
# get the largest dimension of the bounding box | |
scale = max( | |
bound_x[0] - bound_x[1], bound_y[0] - bound_y[1], bound_z[0] - bound_z[1] | |
) | |
xyz = (xyz - center) / scale | |
extra = pc[b, :, 3:] | |
normalize_pc.append(torch.cat([xyz, extra], dim=-1)) | |
return ( | |
torch.stack(normalize_pc, dim=0).to(device) | |
if n_dim == 3 | |
else normalize_pc[0].to(device) | |
) | |
def remove_background( | |
image: Image, | |
bg_remover: Remover = None, | |
force: bool = False, | |
**transparent_background_kwargs, | |
) -> Image: | |
do_remove = True | |
if image.mode == "RGBA" and image.getextrema()[3][0] < 255: | |
do_remove = False | |
do_remove = do_remove or force | |
if do_remove: | |
image = bg_remover.process( | |
image.convert("RGB"), **transparent_background_kwargs | |
) | |
return image | |
def get_1d_bounds(arr): | |
nz = np.flatnonzero(arr) | |
return nz[0], nz[-1] | |
def get_bbox_from_mask(mask, thr=0.5): | |
masks_for_box = (mask > thr).astype(np.float32) | |
assert masks_for_box.sum() > 0, "Empty mask!" | |
x0, x1 = get_1d_bounds(masks_for_box.sum(axis=-2)) | |
y0, y1 = get_1d_bounds(masks_for_box.sum(axis=-1)) | |
return x0, y0, x1, y1 | |
def foreground_crop(image_rgba, crop_ratio=1.3, newsize=None, no_crop=False): | |
# make sure the image is a PIL image in RGBA mode | |
assert image_rgba.mode == "RGBA", "Image must be in RGBA mode!" | |
if not no_crop: | |
mask_np = np.array(image_rgba)[:, :, -1] | |
mask_np = (mask_np >= 1).astype(np.float32) | |
x1, y1, x2, y2 = get_bbox_from_mask(mask_np, thr=0.5) | |
h, w = y2 - y1, x2 - x1 | |
yc, xc = (y1 + y2) / 2, (x1 + x2) / 2 | |
scale = max(h, w) * crop_ratio | |
image = torchvision_F.crop( | |
image_rgba, | |
top=int(yc - scale / 2), | |
left=int(xc - scale / 2), | |
height=int(scale), | |
width=int(scale), | |
) | |
else: | |
image = image_rgba | |
# resize if needed | |
if newsize is not None: | |
image = image.resize(newsize) | |
return image | |