|
|
|
|
|
import streamlit as st |
|
|
import pandas as pd |
|
|
from huggingface_hub import hf_hub_download |
|
|
import joblib |
|
|
|
|
|
|
|
|
model_path = hf_hub_download(repo_id="subhash33/Tourism-Package-Model", filename="best_tourism_model.joblib") |
|
|
|
|
|
|
|
|
model = joblib.load(model_path) |
|
|
|
|
|
|
|
|
st.title("Tourism Package Prediction App") |
|
|
st.write("The Tourism Package Prediction App whether a customer will purchase the newly introduced Wellness Tourism Package before contacting them based on their details.") |
|
|
st.write("Kindly enter the customer details to check whether they are likely to purchase the new package.") |
|
|
|
|
|
|
|
|
Age = st.number_input("Age", min_value=18, max_value=100, value=20) |
|
|
TypeofContact = st.selectbox("Type of Contact", ["Self Enquiry", "Company Invited"]) |
|
|
CityTier = st.selectbox("City Tier", [1, 2, 3]) |
|
|
DurationOfPitch = st.number_input("Duration of Pitch", min_value=1, max_value=150, value=15) |
|
|
Occupation = st.selectbox("Occupation", ["Salaried", "Small Business", "Large Business", "Free Lancer"]) |
|
|
Gender = st.selectbox("Gender", ["Male", "Female"]) |
|
|
NumberOfPersonVisiting = st.number_input("Number of People Visiting", min_value=1, max_value=10, value=3) |
|
|
NumberOfFollowups = st.number_input("Number of Follow-ups", min_value=0, max_value=10, value=3) |
|
|
ProductPitched = st.selectbox("Product Pitched", ["Basic", "Standard", "Deluxe", "Super Deluxe", "King"]) |
|
|
PreferredPropertyStar = st.selectbox("Preferred Property Star", [3, 4, 5]) |
|
|
MaritalStatus = st.selectbox("Marital Status", ["Married", "Unmarried", "Divorced", "Single"]) |
|
|
NumberOfTrips = st.number_input("Number of Trips", min_value=1, max_value=50, value=3) |
|
|
Passport = st.selectbox("Passport", ["Yes", "No"]) |
|
|
PitchSatisfactionScore = st.selectbox("Pitch Satisfaction Score", [1, 2, 3, 4, 5]) |
|
|
OwnCar = st.selectbox("Own Car", ["Yes", "No"]) |
|
|
NumberOfChildrenVisiting = st.number_input("Number of Children Visiting", min_value=0, max_value=10, value=2) |
|
|
Designation = st.selectbox("Designation", ["Executive", "Manager", "Senior Manager", "AVP", "VP"]) |
|
|
MonthlyIncome = st.number_input("Monthly Income", min_value=0, max_value=100000, value=25000) |
|
|
|
|
|
|
|
|
|
|
|
input_data = pd.DataFrame([{ |
|
|
'Age': Age, |
|
|
'TypeofContact': TypeofContact, |
|
|
'CityTier': CityTier, |
|
|
'DurationOfPitch': DurationOfPitch, |
|
|
'Occupation': Occupation, |
|
|
'Gender': Gender, |
|
|
'NumberOfPersonVisiting': NumberOfPersonVisiting, |
|
|
'NumberOfFollowups': NumberOfFollowups, |
|
|
'ProductPitched': ProductPitched, |
|
|
'PreferredPropertyStar': PreferredPropertyStar, |
|
|
'MaritalStatus': MaritalStatus, |
|
|
'NumberOfTrips': NumberOfTrips, |
|
|
'Passport': 1 if Passport == "Yes" else 0, |
|
|
'PitchSatisfactionScore': PitchSatisfactionScore, |
|
|
'OwnCar': 1 if OwnCar == "Yes" else 0, |
|
|
'NumberOfChildrenVisiting': NumberOfChildrenVisiting, |
|
|
'Designation': Designation, |
|
|
'MonthlyIncome': MonthlyIncome |
|
|
}]) |
|
|
|
|
|
|
|
|
classification_threshold = 0.45 |
|
|
|
|
|
|
|
|
if st.button("predict"): |
|
|
predict_proba = model.predict_proba(input_data)[0, 1] |
|
|
prediction = (predict_proba >= classification_threshold).astype(int) |
|
|
result = "likely to purchase the package" if prediction == 1 else "Not likely to purchase the package" |
|
|
st.write(f"Based on the information provided, the customer is {result}.") |
|
|
|