Spaces:
Runtime error
Runtime error
Delete utils/.ipynb_checkpoints
Browse files- utils/.ipynb_checkpoints/__init__-checkpoint.py +0 -0
- utils/.ipynb_checkpoints/camera-checkpoint.py +0 -120
- utils/.ipynb_checkpoints/depth-checkpoint.py +0 -62
- utils/.ipynb_checkpoints/general-checkpoint.py +0 -140
- utils/.ipynb_checkpoints/graphics-checkpoint.py +0 -83
- utils/.ipynb_checkpoints/image-checkpoint.py +0 -20
- utils/.ipynb_checkpoints/loss-checkpoint.py +0 -99
- utils/.ipynb_checkpoints/sh-checkpoint.py +0 -120
- utils/.ipynb_checkpoints/system-checkpoint.py +0 -29
- utils/.ipynb_checkpoints/trajectory-checkpoint.py +0 -621
utils/.ipynb_checkpoints/__init__-checkpoint.py
DELETED
|
File without changes
|
utils/.ipynb_checkpoints/camera-checkpoint.py
DELETED
|
@@ -1,120 +0,0 @@
|
|
| 1 |
-
#
|
| 2 |
-
# Copyright (C) 2023, Inria
|
| 3 |
-
# GRAPHDECO research group, https://team.inria.fr/graphdeco
|
| 4 |
-
# All rights reserved.
|
| 5 |
-
#
|
| 6 |
-
# This software is free for non-commercial, research and evaluation use
|
| 7 |
-
# under the terms of the LICENSE.md file.
|
| 8 |
-
#
|
| 9 |
-
# For inquiries contact [email protected]
|
| 10 |
-
#
|
| 11 |
-
import json
|
| 12 |
-
|
| 13 |
-
import numpy as np
|
| 14 |
-
import torch
|
| 15 |
-
|
| 16 |
-
from scene.cameras import Camera, MiniCam
|
| 17 |
-
from utils.general import PILtoTorch
|
| 18 |
-
from utils.graphics import fov2focal, focal2fov, getWorld2View, getProjectionMatrix
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
WARNED = False
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
def load_json(path, H, W):
|
| 25 |
-
cams = []
|
| 26 |
-
with open(path) as json_file:
|
| 27 |
-
contents = json.load(json_file)
|
| 28 |
-
FoVx = contents["camera_angle_x"]
|
| 29 |
-
FoVy = focal2fov(fov2focal(FoVx, W), H)
|
| 30 |
-
zfar = 100.0
|
| 31 |
-
znear = 0.01
|
| 32 |
-
|
| 33 |
-
frames = contents["frames"]
|
| 34 |
-
for idx, frame in enumerate(frames):
|
| 35 |
-
# NeRF 'transform_matrix' is a camera-to-world transform
|
| 36 |
-
c2w = np.array(frame["transform_matrix"])
|
| 37 |
-
# change from OpenGL/Blender camera axes (Y up, Z back) to COLMAP (Y down, Z forward)
|
| 38 |
-
c2w[:3, 1:3] *= -1
|
| 39 |
-
if c2w.shape[0] == 3:
|
| 40 |
-
one = np.zeros((1, 4))
|
| 41 |
-
one[0, -1] = 1
|
| 42 |
-
c2w = np.concatenate((c2w, one), axis=0)
|
| 43 |
-
|
| 44 |
-
# get the world-to-camera transform and set R, T
|
| 45 |
-
w2c = np.linalg.inv(c2w)
|
| 46 |
-
R = np.transpose(w2c[:3, :3]) # R is stored transposed due to 'glm' in CUDA code
|
| 47 |
-
T = w2c[:3, 3]
|
| 48 |
-
|
| 49 |
-
w2c = torch.as_tensor(getWorld2View(R, T)).T.cuda()
|
| 50 |
-
proj = getProjectionMatrix(znear, zfar, FoVx, FoVy).T.cuda()
|
| 51 |
-
cams.append(MiniCam(W, H, FoVx, FoVy, znear, zfar, w2c, w2c @ proj))
|
| 52 |
-
return cams
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
def loadCam(args, id, cam_info, resolution_scale):
|
| 56 |
-
orig_w, orig_h = cam_info.image.size
|
| 57 |
-
|
| 58 |
-
if args.resolution in [1, 2, 4, 8]:
|
| 59 |
-
resolution = round(orig_w/(resolution_scale * args.resolution)), round(orig_h/(resolution_scale * args.resolution))
|
| 60 |
-
else: # should be a type that converts to float
|
| 61 |
-
if args.resolution == -1:
|
| 62 |
-
if orig_w > 1600:
|
| 63 |
-
global WARNED
|
| 64 |
-
if not WARNED:
|
| 65 |
-
print("[ INFO ] Encountered quite large input images (>1.6K pixels width), rescaling to 1.6K.\n "
|
| 66 |
-
"If this is not desired, please explicitly specify '--resolution/-r' as 1")
|
| 67 |
-
WARNED = True
|
| 68 |
-
global_down = orig_w / 1600
|
| 69 |
-
else:
|
| 70 |
-
global_down = 1
|
| 71 |
-
else:
|
| 72 |
-
global_down = orig_w / args.resolution
|
| 73 |
-
|
| 74 |
-
scale = float(global_down) * float(resolution_scale)
|
| 75 |
-
resolution = (int(orig_w / scale), int(orig_h / scale))
|
| 76 |
-
|
| 77 |
-
resized_image_rgb = PILtoTorch(cam_info.image, resolution)
|
| 78 |
-
|
| 79 |
-
gt_image = resized_image_rgb[:3, ...]
|
| 80 |
-
loaded_mask = None
|
| 81 |
-
|
| 82 |
-
if resized_image_rgb.shape[1] == 4:
|
| 83 |
-
loaded_mask = resized_image_rgb[3:4, ...]
|
| 84 |
-
|
| 85 |
-
return Camera(colmap_id=cam_info.uid, R=cam_info.R, T=cam_info.T,
|
| 86 |
-
FoVx=cam_info.FovX, FoVy=cam_info.FovY,
|
| 87 |
-
image=gt_image, gt_alpha_mask=loaded_mask,
|
| 88 |
-
image_name=cam_info.image_name, uid=id, data_device=args.data_device)
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
def cameraList_from_camInfos(cam_infos, resolution_scale, args):
|
| 92 |
-
camera_list = []
|
| 93 |
-
|
| 94 |
-
for id, c in enumerate(cam_infos):
|
| 95 |
-
camera_list.append(loadCam(args, id, c, resolution_scale))
|
| 96 |
-
|
| 97 |
-
return camera_list
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
def camera_to_JSON(id, camera : Camera):
|
| 101 |
-
Rt = np.zeros((4, 4))
|
| 102 |
-
Rt[:3, :3] = camera.R.transpose()
|
| 103 |
-
Rt[:3, 3] = camera.T
|
| 104 |
-
Rt[3, 3] = 1.0
|
| 105 |
-
|
| 106 |
-
W2C = np.linalg.inv(Rt)
|
| 107 |
-
pos = W2C[:3, 3]
|
| 108 |
-
rot = W2C[:3, :3]
|
| 109 |
-
serializable_array_2d = [x.tolist() for x in rot]
|
| 110 |
-
camera_entry = {
|
| 111 |
-
'id' : id,
|
| 112 |
-
'img_name' : camera.image_name,
|
| 113 |
-
'width' : camera.width,
|
| 114 |
-
'height' : camera.height,
|
| 115 |
-
'position': pos.tolist(),
|
| 116 |
-
'rotation': serializable_array_2d,
|
| 117 |
-
'fy' : fov2focal(camera.FovY, camera.height),
|
| 118 |
-
'fx' : fov2focal(camera.FovX, camera.width)
|
| 119 |
-
}
|
| 120 |
-
return camera_entry
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
utils/.ipynb_checkpoints/depth-checkpoint.py
DELETED
|
@@ -1,62 +0,0 @@
|
|
| 1 |
-
import matplotlib
|
| 2 |
-
import matplotlib.cm
|
| 3 |
-
import numpy as np
|
| 4 |
-
import torch
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
def colorize(value, vmin=None, vmax=None, cmap='jet', invalid_val=-99, invalid_mask=None, background_color=(128, 128, 128, 255), gamma_corrected=False, value_transform=None):
|
| 8 |
-
"""Converts a depth map to a color image.
|
| 9 |
-
|
| 10 |
-
Args:
|
| 11 |
-
value (torch.Tensor, numpy.ndarry): Input depth map. Shape: (H, W) or (1, H, W) or (1, 1, H, W). All singular dimensions are squeezed
|
| 12 |
-
vmin (float, optional): vmin-valued entries are mapped to start color of cmap. If None, value.min() is used. Defaults to None.
|
| 13 |
-
vmax (float, optional): vmax-valued entries are mapped to end color of cmap. If None, value.max() is used. Defaults to None.
|
| 14 |
-
cmap (str, optional): matplotlib colormap to use. Defaults to 'magma_r'.
|
| 15 |
-
invalid_val (int, optional): Specifies value of invalid pixels that should be colored as 'background_color'. Defaults to -99.
|
| 16 |
-
invalid_mask (numpy.ndarray, optional): Boolean mask for invalid regions. Defaults to None.
|
| 17 |
-
background_color (tuple[int], optional): 4-tuple RGB color to give to invalid pixels. Defaults to (128, 128, 128, 255).
|
| 18 |
-
gamma_corrected (bool, optional): Apply gamma correction to colored image. Defaults to False.
|
| 19 |
-
value_transform (Callable, optional): Apply transform function to valid pixels before coloring. Defaults to None.
|
| 20 |
-
|
| 21 |
-
Returns:
|
| 22 |
-
numpy.ndarray, dtype - uint8: Colored depth map. Shape: (H, W, 4)
|
| 23 |
-
"""
|
| 24 |
-
if isinstance(value, torch.Tensor):
|
| 25 |
-
value = value.detach().cpu().numpy()
|
| 26 |
-
|
| 27 |
-
value = value.squeeze()
|
| 28 |
-
if invalid_mask is None:
|
| 29 |
-
invalid_mask = value == invalid_val
|
| 30 |
-
mask = np.logical_not(invalid_mask)
|
| 31 |
-
|
| 32 |
-
# normalize
|
| 33 |
-
vmin = np.percentile(value[mask],2) if vmin is None else vmin
|
| 34 |
-
vmax = np.percentile(value[mask],98) if vmax is None else vmax
|
| 35 |
-
if vmin != vmax:
|
| 36 |
-
value = (value - vmin) / (vmax - vmin) # vmin..vmax
|
| 37 |
-
else:
|
| 38 |
-
# Avoid 0-division
|
| 39 |
-
value = value * 0.
|
| 40 |
-
|
| 41 |
-
# squeeze last dim if it exists
|
| 42 |
-
# grey out the invalid values
|
| 43 |
-
|
| 44 |
-
value[invalid_mask] = np.nan
|
| 45 |
-
cmapper = matplotlib.cm.get_cmap(cmap)
|
| 46 |
-
if value_transform:
|
| 47 |
-
value = value_transform(value)
|
| 48 |
-
# value = value / value.max()
|
| 49 |
-
value = cmapper(value, bytes=True) # (nxmx4)
|
| 50 |
-
|
| 51 |
-
# img = value[:, :, :]
|
| 52 |
-
img = value[...]
|
| 53 |
-
img[invalid_mask] = background_color
|
| 54 |
-
|
| 55 |
-
# return img.transpose((2, 0, 1))
|
| 56 |
-
if gamma_corrected:
|
| 57 |
-
# gamma correction
|
| 58 |
-
img = img / 255
|
| 59 |
-
img = np.power(img, 2.2)
|
| 60 |
-
img = img * 255
|
| 61 |
-
img = img.astype(np.uint8)
|
| 62 |
-
return img
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
utils/.ipynb_checkpoints/general-checkpoint.py
DELETED
|
@@ -1,140 +0,0 @@
|
|
| 1 |
-
#
|
| 2 |
-
# Copyright (C) 2023, Inria
|
| 3 |
-
# GRAPHDECO research group, https://team.inria.fr/graphdeco
|
| 4 |
-
# All rights reserved.
|
| 5 |
-
#
|
| 6 |
-
# This software is free for non-commercial, research and evaluation use
|
| 7 |
-
# under the terms of the LICENSE.md file.
|
| 8 |
-
#
|
| 9 |
-
# For inquiries contact [email protected]
|
| 10 |
-
#
|
| 11 |
-
import sys
|
| 12 |
-
import random
|
| 13 |
-
from datetime import datetime
|
| 14 |
-
import numpy as np
|
| 15 |
-
import torch
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
def inverse_sigmoid(x):
|
| 19 |
-
return torch.log(x/(1-x))
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
def PILtoTorch(pil_image, resolution):
|
| 23 |
-
resized_image_PIL = pil_image.resize(resolution)
|
| 24 |
-
resized_image = torch.from_numpy(np.array(resized_image_PIL)) / 255.0
|
| 25 |
-
if len(resized_image.shape) == 3:
|
| 26 |
-
return resized_image.permute(2, 0, 1)
|
| 27 |
-
else:
|
| 28 |
-
return resized_image.unsqueeze(dim=-1).permute(2, 0, 1)
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
def get_expon_lr_func(
|
| 32 |
-
lr_init, lr_final, lr_delay_steps=0, lr_delay_mult=1.0, max_steps=1000000
|
| 33 |
-
):
|
| 34 |
-
"""
|
| 35 |
-
Copied from Plenoxels
|
| 36 |
-
|
| 37 |
-
Continuous learning rate decay function. Adapted from JaxNeRF
|
| 38 |
-
The returned rate is lr_init when step=0 and lr_final when step=max_steps, and
|
| 39 |
-
is log-linearly interpolated elsewhere (equivalent to exponential decay).
|
| 40 |
-
If lr_delay_steps>0 then the learning rate will be scaled by some smooth
|
| 41 |
-
function of lr_delay_mult, such that the initial learning rate is
|
| 42 |
-
lr_init*lr_delay_mult at the beginning of optimization but will be eased back
|
| 43 |
-
to the normal learning rate when steps>lr_delay_steps.
|
| 44 |
-
:param conf: config subtree 'lr' or similar
|
| 45 |
-
:param max_steps: int, the number of steps during optimization.
|
| 46 |
-
:return HoF which takes step as input
|
| 47 |
-
"""
|
| 48 |
-
|
| 49 |
-
def helper(step):
|
| 50 |
-
if step < 0 or (lr_init == 0.0 and lr_final == 0.0):
|
| 51 |
-
# Disable this parameter
|
| 52 |
-
return 0.0
|
| 53 |
-
if lr_delay_steps > 0:
|
| 54 |
-
# A kind of reverse cosine decay.
|
| 55 |
-
delay_rate = lr_delay_mult + (1 - lr_delay_mult) * np.sin(
|
| 56 |
-
0.5 * np.pi * np.clip(step / lr_delay_steps, 0, 1)
|
| 57 |
-
)
|
| 58 |
-
else:
|
| 59 |
-
delay_rate = 1.0
|
| 60 |
-
t = np.clip(step / max_steps, 0, 1)
|
| 61 |
-
log_lerp = np.exp(np.log(lr_init) * (1 - t) + np.log(lr_final) * t)
|
| 62 |
-
return delay_rate * log_lerp
|
| 63 |
-
|
| 64 |
-
return helper
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
def strip_lowerdiag(L):
|
| 68 |
-
uncertainty = torch.zeros((L.shape[0], 6), dtype=torch.float, device="cuda")
|
| 69 |
-
|
| 70 |
-
uncertainty[:, 0] = L[:, 0, 0]
|
| 71 |
-
uncertainty[:, 1] = L[:, 0, 1]
|
| 72 |
-
uncertainty[:, 2] = L[:, 0, 2]
|
| 73 |
-
uncertainty[:, 3] = L[:, 1, 1]
|
| 74 |
-
uncertainty[:, 4] = L[:, 1, 2]
|
| 75 |
-
uncertainty[:, 5] = L[:, 2, 2]
|
| 76 |
-
return uncertainty
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
def strip_symmetric(sym):
|
| 80 |
-
return strip_lowerdiag(sym)
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
def build_rotation(r):
|
| 84 |
-
norm = torch.sqrt(r[:,0]*r[:,0] + r[:,1]*r[:,1] + r[:,2]*r[:,2] + r[:,3]*r[:,3])
|
| 85 |
-
|
| 86 |
-
q = r / norm[:, None]
|
| 87 |
-
|
| 88 |
-
R = torch.zeros((q.size(0), 3, 3), device='cuda')
|
| 89 |
-
|
| 90 |
-
r = q[:, 0]
|
| 91 |
-
x = q[:, 1]
|
| 92 |
-
y = q[:, 2]
|
| 93 |
-
z = q[:, 3]
|
| 94 |
-
|
| 95 |
-
R[:, 0, 0] = 1 - 2 * (y*y + z*z)
|
| 96 |
-
R[:, 0, 1] = 2 * (x*y - r*z)
|
| 97 |
-
R[:, 0, 2] = 2 * (x*z + r*y)
|
| 98 |
-
R[:, 1, 0] = 2 * (x*y + r*z)
|
| 99 |
-
R[:, 1, 1] = 1 - 2 * (x*x + z*z)
|
| 100 |
-
R[:, 1, 2] = 2 * (y*z - r*x)
|
| 101 |
-
R[:, 2, 0] = 2 * (x*z - r*y)
|
| 102 |
-
R[:, 2, 1] = 2 * (y*z + r*x)
|
| 103 |
-
R[:, 2, 2] = 1 - 2 * (x*x + y*y)
|
| 104 |
-
return R
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
def build_scaling_rotation(s, r):
|
| 108 |
-
L = torch.zeros((s.shape[0], 3, 3), dtype=torch.float, device="cuda")
|
| 109 |
-
R = build_rotation(r)
|
| 110 |
-
|
| 111 |
-
L[:,0,0] = s[:,0]
|
| 112 |
-
L[:,1,1] = s[:,1]
|
| 113 |
-
L[:,2,2] = s[:,2]
|
| 114 |
-
|
| 115 |
-
L = R @ L
|
| 116 |
-
return L
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
def safe_state(silent):
|
| 120 |
-
old_f = sys.stdout
|
| 121 |
-
class F:
|
| 122 |
-
def __init__(self, silent):
|
| 123 |
-
self.silent = silent
|
| 124 |
-
|
| 125 |
-
def write(self, x):
|
| 126 |
-
if not self.silent:
|
| 127 |
-
if x.endswith("\n"):
|
| 128 |
-
old_f.write(x.replace("\n", " [{}]\n".format(str(datetime.now().strftime("%d/%m %H:%M:%S")))))
|
| 129 |
-
else:
|
| 130 |
-
old_f.write(x)
|
| 131 |
-
|
| 132 |
-
def flush(self):
|
| 133 |
-
old_f.flush()
|
| 134 |
-
|
| 135 |
-
sys.stdout = F(silent)
|
| 136 |
-
|
| 137 |
-
random.seed(0)
|
| 138 |
-
np.random.seed(0)
|
| 139 |
-
torch.manual_seed(0)
|
| 140 |
-
torch.cuda.set_device(torch.device("cuda:0"))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
utils/.ipynb_checkpoints/graphics-checkpoint.py
DELETED
|
@@ -1,83 +0,0 @@
|
|
| 1 |
-
#
|
| 2 |
-
# Copyright (C) 2023, Inria
|
| 3 |
-
# GRAPHDECO research group, https://team.inria.fr/graphdeco
|
| 4 |
-
# All rights reserved.
|
| 5 |
-
#
|
| 6 |
-
# This software is free for non-commercial, research and evaluation use
|
| 7 |
-
# under the terms of the LICENSE.md file.
|
| 8 |
-
#
|
| 9 |
-
# For inquiries contact [email protected]
|
| 10 |
-
#
|
| 11 |
-
import math
|
| 12 |
-
from typing import NamedTuple
|
| 13 |
-
import numpy as np
|
| 14 |
-
import torch
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
class BasicPointCloud(NamedTuple):
|
| 18 |
-
points : np.array
|
| 19 |
-
colors : np.array
|
| 20 |
-
normals : np.array
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
def geom_transform_points(points, transf_matrix):
|
| 24 |
-
P, _ = points.shape
|
| 25 |
-
ones = torch.ones(P, 1, dtype=points.dtype, device=points.device)
|
| 26 |
-
points_hom = torch.cat([points, ones], dim=1)
|
| 27 |
-
points_out = torch.matmul(points_hom, transf_matrix.unsqueeze(0))
|
| 28 |
-
|
| 29 |
-
denom = points_out[..., 3:] + 0.0000001
|
| 30 |
-
return (points_out[..., :3] / denom).squeeze(dim=0)
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
def getWorld2View(R, t):
|
| 34 |
-
Rt = np.zeros((4, 4))
|
| 35 |
-
Rt[:3, :3] = R.transpose()
|
| 36 |
-
Rt[:3, 3] = t
|
| 37 |
-
Rt[3, 3] = 1.0
|
| 38 |
-
return np.float32(Rt)
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
def getWorld2View2(R, t, translate=np.array([.0, .0, .0]), scale=1.0):
|
| 42 |
-
Rt = np.zeros((4, 4))
|
| 43 |
-
Rt[:3, :3] = R.transpose()
|
| 44 |
-
Rt[:3, 3] = t
|
| 45 |
-
Rt[3, 3] = 1.0
|
| 46 |
-
|
| 47 |
-
C2W = np.linalg.inv(Rt)
|
| 48 |
-
cam_center = C2W[:3, 3]
|
| 49 |
-
cam_center = (cam_center + translate) * scale
|
| 50 |
-
C2W[:3, 3] = cam_center
|
| 51 |
-
Rt = np.linalg.inv(C2W)
|
| 52 |
-
return np.float32(Rt)
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
def getProjectionMatrix(znear, zfar, fovX, fovY):
|
| 56 |
-
tanHalfFovY = math.tan((fovY / 2))
|
| 57 |
-
tanHalfFovX = math.tan((fovX / 2))
|
| 58 |
-
|
| 59 |
-
top = tanHalfFovY * znear
|
| 60 |
-
bottom = -top
|
| 61 |
-
right = tanHalfFovX * znear
|
| 62 |
-
left = -right
|
| 63 |
-
|
| 64 |
-
P = torch.zeros(4, 4)
|
| 65 |
-
|
| 66 |
-
z_sign = 1.0
|
| 67 |
-
|
| 68 |
-
P[0, 0] = 2.0 * znear / (right - left)
|
| 69 |
-
P[1, 1] = 2.0 * znear / (top - bottom)
|
| 70 |
-
P[0, 2] = (right + left) / (right - left)
|
| 71 |
-
P[1, 2] = (top + bottom) / (top - bottom)
|
| 72 |
-
P[3, 2] = z_sign
|
| 73 |
-
P[2, 2] = z_sign * zfar / (zfar - znear)
|
| 74 |
-
P[2, 3] = -(zfar * znear) / (zfar - znear)
|
| 75 |
-
return P
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
def fov2focal(fov, pixels):
|
| 79 |
-
return pixels / (2 * math.tan(fov / 2))
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
def focal2fov(focal, pixels):
|
| 83 |
-
return 2*math.atan(pixels/(2*focal))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
utils/.ipynb_checkpoints/image-checkpoint.py
DELETED
|
@@ -1,20 +0,0 @@
|
|
| 1 |
-
#
|
| 2 |
-
# Copyright (C) 2023, Inria
|
| 3 |
-
# GRAPHDECO research group, https://team.inria.fr/graphdeco
|
| 4 |
-
# All rights reserved.
|
| 5 |
-
#
|
| 6 |
-
# This software is free for non-commercial, research and evaluation use
|
| 7 |
-
# under the terms of the LICENSE.md file.
|
| 8 |
-
#
|
| 9 |
-
# For inquiries contact [email protected]
|
| 10 |
-
#
|
| 11 |
-
import torch
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
def mse(img1, img2):
|
| 15 |
-
return (((img1 - img2)) ** 2).view(img1.shape[0], -1).mean(1, keepdim=True)
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
def psnr(img1, img2):
|
| 19 |
-
mse = (((img1 - img2)) ** 2).view(img1.shape[0], -1).mean(1, keepdim=True)
|
| 20 |
-
return 20 * torch.log10(1.0 / torch.sqrt(mse))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
utils/.ipynb_checkpoints/loss-checkpoint.py
DELETED
|
@@ -1,99 +0,0 @@
|
|
| 1 |
-
#
|
| 2 |
-
# Copyright (C) 2023, Inria
|
| 3 |
-
# GRAPHDECO research group, https://team.inria.fr/graphdeco
|
| 4 |
-
# All rights reserved.
|
| 5 |
-
#
|
| 6 |
-
# This software is free for non-commercial, research and evaluation use
|
| 7 |
-
# under the terms of the LICENSE.md file.
|
| 8 |
-
#
|
| 9 |
-
# For inquiries contact [email protected]
|
| 10 |
-
#
|
| 11 |
-
from math import exp
|
| 12 |
-
|
| 13 |
-
import torch
|
| 14 |
-
import torch.nn.functional as F
|
| 15 |
-
from torch.autograd import Variable
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
def l1_loss(network_output, gt):
|
| 19 |
-
return torch.abs((network_output - gt)).mean()
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
def l2_loss(network_output, gt):
|
| 23 |
-
return ((network_output - gt) ** 2).mean()
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
def gaussian(window_size, sigma):
|
| 27 |
-
gauss = torch.Tensor([exp(-(x - window_size // 2) ** 2 / float(2 * sigma ** 2)) for x in range(window_size)])
|
| 28 |
-
return gauss / gauss.sum()
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
def create_window(window_size, channel):
|
| 32 |
-
_1D_window = gaussian(window_size, 1.5).unsqueeze(1)
|
| 33 |
-
_2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0)
|
| 34 |
-
window = Variable(_2D_window.expand(channel, 1, window_size, window_size).contiguous())
|
| 35 |
-
return window
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
def ssim(img1, img2, window_size=11, size_average=True):
|
| 39 |
-
channel = img1.size(-3)
|
| 40 |
-
window = create_window(window_size, channel)
|
| 41 |
-
|
| 42 |
-
if img1.is_cuda:
|
| 43 |
-
window = window.cuda(img1.get_device())
|
| 44 |
-
window = window.type_as(img1)
|
| 45 |
-
|
| 46 |
-
return _ssim(img1, img2, window, window_size, channel, size_average)
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
def _ssim(img1, img2, window, window_size, channel, size_average=True):
|
| 50 |
-
mu1 = F.conv2d(img1, window, padding=window_size // 2, groups=channel)
|
| 51 |
-
mu2 = F.conv2d(img2, window, padding=window_size // 2, groups=channel)
|
| 52 |
-
|
| 53 |
-
mu1_sq = mu1.pow(2)
|
| 54 |
-
mu2_sq = mu2.pow(2)
|
| 55 |
-
mu1_mu2 = mu1 * mu2
|
| 56 |
-
|
| 57 |
-
sigma1_sq = F.conv2d(img1 * img1, window, padding=window_size // 2, groups=channel) - mu1_sq
|
| 58 |
-
sigma2_sq = F.conv2d(img2 * img2, window, padding=window_size // 2, groups=channel) - mu2_sq
|
| 59 |
-
sigma12 = F.conv2d(img1 * img2, window, padding=window_size // 2, groups=channel) - mu1_mu2
|
| 60 |
-
|
| 61 |
-
C1 = 0.01 ** 2
|
| 62 |
-
C2 = 0.03 ** 2
|
| 63 |
-
|
| 64 |
-
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2))
|
| 65 |
-
|
| 66 |
-
if size_average:
|
| 67 |
-
return ssim_map.mean()
|
| 68 |
-
else:
|
| 69 |
-
return ssim_map.mean(1).mean(1).mean(1)
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
import numpy as np
|
| 73 |
-
import cv2
|
| 74 |
-
def image2canny(image, thres1, thres2, isEdge1=True):
|
| 75 |
-
""" image: (H, W, 3)"""
|
| 76 |
-
canny_mask = torch.from_numpy(cv2.Canny((image.detach().cpu().numpy()*255.).astype(np.uint8), thres1, thres2)/255.)
|
| 77 |
-
if not isEdge1:
|
| 78 |
-
canny_mask = 1. - canny_mask
|
| 79 |
-
return canny_mask.float()
|
| 80 |
-
|
| 81 |
-
with torch.no_grad():
|
| 82 |
-
kernelsize=3
|
| 83 |
-
conv = torch.nn.Conv2d(1, 1, kernel_size=kernelsize, padding=(kernelsize//2))
|
| 84 |
-
kernel = torch.tensor([[0.,1.,0.],[1.,0.,1.],[0.,1.,0.]]).reshape(1,1,kernelsize,kernelsize)
|
| 85 |
-
conv.weight.data = kernel #torch.ones((1,1,kernelsize,kernelsize))
|
| 86 |
-
conv.bias.data = torch.tensor([0.])
|
| 87 |
-
conv.requires_grad_(False)
|
| 88 |
-
conv = conv.cuda()
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
def nearMean_map(array, mask, kernelsize=3):
|
| 92 |
-
""" array: (H,W) / mask: (H,W) """
|
| 93 |
-
cnt_map = torch.ones_like(array)
|
| 94 |
-
|
| 95 |
-
nearMean_map = conv((array * mask)[None,None])
|
| 96 |
-
cnt_map = conv((cnt_map * mask)[None,None])
|
| 97 |
-
nearMean_map = (nearMean_map / (cnt_map+1e-8)).squeeze()
|
| 98 |
-
|
| 99 |
-
return nearMean_map
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
utils/.ipynb_checkpoints/sh-checkpoint.py
DELETED
|
@@ -1,120 +0,0 @@
|
|
| 1 |
-
# Copyright 2021 The PlenOctree Authors.
|
| 2 |
-
# Redistribution and use in source and binary forms, with or without
|
| 3 |
-
# modification, are permitted provided that the following conditions are met:
|
| 4 |
-
#
|
| 5 |
-
# 1. Redistributions of source code must retain the above copyright notice,
|
| 6 |
-
# this list of conditions and the following disclaimer.
|
| 7 |
-
#
|
| 8 |
-
# 2. Redistributions in binary form must reproduce the above copyright notice,
|
| 9 |
-
# this list of conditions and the following disclaimer in the documentation
|
| 10 |
-
# and/or other materials provided with the distribution.
|
| 11 |
-
#
|
| 12 |
-
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
| 13 |
-
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
| 14 |
-
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
| 15 |
-
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
| 16 |
-
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
| 17 |
-
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
| 18 |
-
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
| 19 |
-
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
| 20 |
-
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
| 21 |
-
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
| 22 |
-
# POSSIBILITY OF SUCH DAMAGE.
|
| 23 |
-
import torch
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
C0 = 0.28209479177387814
|
| 27 |
-
C1 = 0.4886025119029199
|
| 28 |
-
C2 = [
|
| 29 |
-
1.0925484305920792,
|
| 30 |
-
-1.0925484305920792,
|
| 31 |
-
0.31539156525252005,
|
| 32 |
-
-1.0925484305920792,
|
| 33 |
-
0.5462742152960396
|
| 34 |
-
]
|
| 35 |
-
C3 = [
|
| 36 |
-
-0.5900435899266435,
|
| 37 |
-
2.890611442640554,
|
| 38 |
-
-0.4570457994644658,
|
| 39 |
-
0.3731763325901154,
|
| 40 |
-
-0.4570457994644658,
|
| 41 |
-
1.445305721320277,
|
| 42 |
-
-0.5900435899266435
|
| 43 |
-
]
|
| 44 |
-
C4 = [
|
| 45 |
-
2.5033429417967046,
|
| 46 |
-
-1.7701307697799304,
|
| 47 |
-
0.9461746957575601,
|
| 48 |
-
-0.6690465435572892,
|
| 49 |
-
0.10578554691520431,
|
| 50 |
-
-0.6690465435572892,
|
| 51 |
-
0.47308734787878004,
|
| 52 |
-
-1.7701307697799304,
|
| 53 |
-
0.6258357354491761,
|
| 54 |
-
]
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
def eval_sh(deg, sh, dirs):
|
| 58 |
-
"""
|
| 59 |
-
Evaluate spherical harmonics at unit directions
|
| 60 |
-
using hardcoded SH polynomials.
|
| 61 |
-
Works with torch/np/jnp.
|
| 62 |
-
... Can be 0 or more batch dimensions.
|
| 63 |
-
Args:
|
| 64 |
-
deg: int SH deg. Currently, 0-3 supported
|
| 65 |
-
sh: jnp.ndarray SH coeffs [..., C, (deg + 1) ** 2]
|
| 66 |
-
dirs: jnp.ndarray unit directions [..., 3]
|
| 67 |
-
Returns:
|
| 68 |
-
[..., C]
|
| 69 |
-
"""
|
| 70 |
-
assert deg <= 4 and deg >= 0
|
| 71 |
-
coeff = (deg + 1) ** 2
|
| 72 |
-
assert sh.shape[-1] >= coeff
|
| 73 |
-
|
| 74 |
-
result = C0 * sh[..., 0]
|
| 75 |
-
if deg > 0:
|
| 76 |
-
x, y, z = dirs[..., 0:1], dirs[..., 1:2], dirs[..., 2:3]
|
| 77 |
-
result = (result -
|
| 78 |
-
C1 * y * sh[..., 1] +
|
| 79 |
-
C1 * z * sh[..., 2] -
|
| 80 |
-
C1 * x * sh[..., 3])
|
| 81 |
-
|
| 82 |
-
if deg > 1:
|
| 83 |
-
xx, yy, zz = x * x, y * y, z * z
|
| 84 |
-
xy, yz, xz = x * y, y * z, x * z
|
| 85 |
-
result = (result +
|
| 86 |
-
C2[0] * xy * sh[..., 4] +
|
| 87 |
-
C2[1] * yz * sh[..., 5] +
|
| 88 |
-
C2[2] * (2.0 * zz - xx - yy) * sh[..., 6] +
|
| 89 |
-
C2[3] * xz * sh[..., 7] +
|
| 90 |
-
C2[4] * (xx - yy) * sh[..., 8])
|
| 91 |
-
|
| 92 |
-
if deg > 2:
|
| 93 |
-
result = (result +
|
| 94 |
-
C3[0] * y * (3 * xx - yy) * sh[..., 9] +
|
| 95 |
-
C3[1] * xy * z * sh[..., 10] +
|
| 96 |
-
C3[2] * y * (4 * zz - xx - yy)* sh[..., 11] +
|
| 97 |
-
C3[3] * z * (2 * zz - 3 * xx - 3 * yy) * sh[..., 12] +
|
| 98 |
-
C3[4] * x * (4 * zz - xx - yy) * sh[..., 13] +
|
| 99 |
-
C3[5] * z * (xx - yy) * sh[..., 14] +
|
| 100 |
-
C3[6] * x * (xx - 3 * yy) * sh[..., 15])
|
| 101 |
-
|
| 102 |
-
if deg > 3:
|
| 103 |
-
result = (result + C4[0] * xy * (xx - yy) * sh[..., 16] +
|
| 104 |
-
C4[1] * yz * (3 * xx - yy) * sh[..., 17] +
|
| 105 |
-
C4[2] * xy * (7 * zz - 1) * sh[..., 18] +
|
| 106 |
-
C4[3] * yz * (7 * zz - 3) * sh[..., 19] +
|
| 107 |
-
C4[4] * (zz * (35 * zz - 30) + 3) * sh[..., 20] +
|
| 108 |
-
C4[5] * xz * (7 * zz - 3) * sh[..., 21] +
|
| 109 |
-
C4[6] * (xx - yy) * (7 * zz - 1) * sh[..., 22] +
|
| 110 |
-
C4[7] * xz * (xx - 3 * yy) * sh[..., 23] +
|
| 111 |
-
C4[8] * (xx * (xx - 3 * yy) - yy * (3 * xx - yy)) * sh[..., 24])
|
| 112 |
-
return result
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
def RGB2SH(rgb):
|
| 116 |
-
return (rgb - 0.5) / C0
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
def SH2RGB(sh):
|
| 120 |
-
return sh * C0 + 0.5
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
utils/.ipynb_checkpoints/system-checkpoint.py
DELETED
|
@@ -1,29 +0,0 @@
|
|
| 1 |
-
#
|
| 2 |
-
# Copyright (C) 2023, Inria
|
| 3 |
-
# GRAPHDECO research group, https://team.inria.fr/graphdeco
|
| 4 |
-
# All rights reserved.
|
| 5 |
-
#
|
| 6 |
-
# This software is free for non-commercial, research and evaluation use
|
| 7 |
-
# under the terms of the LICENSE.md file.
|
| 8 |
-
#
|
| 9 |
-
# For inquiries contact [email protected]
|
| 10 |
-
#
|
| 11 |
-
from errno import EEXIST
|
| 12 |
-
from os import makedirs, path
|
| 13 |
-
import os
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
def mkdir_p(folder_path):
|
| 17 |
-
# Creates a directory. equivalent to using mkdir -p on the command line
|
| 18 |
-
try:
|
| 19 |
-
makedirs(folder_path)
|
| 20 |
-
except OSError as exc: # Python >2.5
|
| 21 |
-
if exc.errno == EEXIST and path.isdir(folder_path):
|
| 22 |
-
pass
|
| 23 |
-
else:
|
| 24 |
-
raise
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
def searchForMaxIteration(folder):
|
| 28 |
-
saved_iters = [int(fname.split("_")[-1]) for fname in os.listdir(folder)]
|
| 29 |
-
return max(saved_iters)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
utils/.ipynb_checkpoints/trajectory-checkpoint.py
DELETED
|
@@ -1,621 +0,0 @@
|
|
| 1 |
-
# Copyright (C) 2023, Computer Vision Lab, Seoul National University, https://cv.snu.ac.kr
|
| 2 |
-
#
|
| 3 |
-
# Copyright 2023 LucidDreamer Authors
|
| 4 |
-
#
|
| 5 |
-
# Computer Vision Lab, SNU, its affiliates and licensors retain all intellectual
|
| 6 |
-
# property and proprietary rights in and to this material, related
|
| 7 |
-
# documentation and any modifications thereto. Any use, reproduction,
|
| 8 |
-
# disclosure or distribution of this material and related documentation
|
| 9 |
-
# without an express license agreement from the Computer Vision Lab, SNU or
|
| 10 |
-
# its affiliates is strictly prohibited.
|
| 11 |
-
#
|
| 12 |
-
# For permission requests, please contact [email protected], [email protected], [email protected], [email protected].
|
| 13 |
-
import os
|
| 14 |
-
import numpy as np
|
| 15 |
-
import torch
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
def generate_seed(scale, viewangle):
|
| 19 |
-
# World 2 Camera
|
| 20 |
-
#### rotate x,y
|
| 21 |
-
render_poses = [np.array([[1,0,0,0],[0,1,0,0],[0,0,1,0]])]
|
| 22 |
-
ang = 5
|
| 23 |
-
for i,j in zip([ang,2*ang,3*ang,2*ang,ang,0,-ang,-2*ang,-3*ang,-2*ang,-ang,0,ang,2*ang,3*ang,2*ang,ang,0], [0,0,0,ang,2*ang,3*ang,2*ang,ang,0,-ang,-2*ang,-3*ang,-2*ang,-ang,0,0,0,0]):
|
| 24 |
-
th, phi = i/180*np.pi, j/180*np.pi
|
| 25 |
-
posetemp = np.zeros((3, 4))
|
| 26 |
-
posetemp[:3,:3] = np.matmul(np.eye(3),
|
| 27 |
-
np.matmul(np.array([[np.cos(th), 0, np.sin(th)], [0, 1, 0], [-np.sin(th), 0, np.cos(th)]]), np.array([[1, 0, 0], [0, np.cos(phi), -np.sin(phi)], [0, np.sin(phi), np.cos(phi)]]))) # Turn left
|
| 28 |
-
posetemp[:3,3:4] = np.array([0,0,0]).reshape(3,1) # * scale # Transition vector
|
| 29 |
-
render_poses.append(posetemp)
|
| 30 |
-
|
| 31 |
-
for i,j in zip([-ang,-2*ang,-3*ang,-2*ang,-ang,0,ang,2*ang,3*ang,2*ang,ang,0,-ang,-2*ang,-3*ang,-2*ang,-ang,0], [0,0,0,ang,ang,ang,ang,ang,0,-ang,-ang,-ang,-ang,-ang,0,0,0,0]):
|
| 32 |
-
th, phi = i/180*np.pi, j/180*np.pi
|
| 33 |
-
posetemp = np.zeros((3, 4))
|
| 34 |
-
posetemp[:3,:3] = np.matmul(np.array([[np.cos(-3*ang/180*np.pi), 0, np.sin(-3*ang/180*np.pi)], [0, 1, 0], [-np.sin(-3*ang/180*np.pi), 0, np.cos(-3*ang/180*np.pi)]]),
|
| 35 |
-
np.matmul(np.array([[np.cos(th), 0, np.sin(th)], [0, 1, 0], [-np.sin(th), 0, np.cos(th)]]), np.array([[1, 0, 0], [0, np.cos(phi), -np.sin(phi)], [0, np.sin(phi), np.cos(phi)]])))
|
| 36 |
-
posetemp[:3,3:4] = np.array([1,0,0]).reshape(3,1) # * scale # Transition vector
|
| 37 |
-
render_poses.append(posetemp)
|
| 38 |
-
|
| 39 |
-
for i,j in zip([ang,2*ang,3*ang,2*ang,ang,0,-ang,-2*ang,-3*ang,-2*ang,-ang,0,ang,2*ang,3*ang,2*ang,ang,0], [0,0,0,ang,ang,ang,ang,ang,0,-ang,-ang,-ang,-ang,-ang,0,0,0,0]):
|
| 40 |
-
th, phi = i/180*np.pi, j/180*np.pi
|
| 41 |
-
posetemp = np.zeros((3, 4))
|
| 42 |
-
posetemp[:3,:3] = np.matmul(np.array([[np.cos(3*ang/180*np.pi), 0, np.sin(3*ang/180*np.pi)], [0, 1, 0], [-np.sin(3*ang/180*np.pi), 0, np.cos(3*ang/180*np.pi)]]),
|
| 43 |
-
np.matmul(np.array([[np.cos(th), 0, np.sin(th)], [0, 1, 0], [-np.sin(th), 0, np.cos(th)]]), np.array([[1, 0, 0], [0, np.cos(phi), -np.sin(phi)], [0, np.sin(phi), np.cos(phi)]])))
|
| 44 |
-
posetemp[:3,3:4] = np.array([-1,0,0]).reshape(3,1) # * scale # Transition vector
|
| 45 |
-
render_poses.append(posetemp)
|
| 46 |
-
|
| 47 |
-
# for i,j in zip([ang,2*ang,3*ang,2*ang,ang,0,-ang,-2*ang,-3*ang,-2*ang,-ang,0,ang,2*ang,3*ang,2*ang,ang,0], [0,0,0,ang,2*ang,3*ang,2*ang,ang,0,-ang,-2*ang,-3*ang,-2*ang,-ang,0,0,0,0]):
|
| 48 |
-
# th, phi = i/180*np.pi, j/180*np.pi
|
| 49 |
-
# posetemp = np.zeros((3, 4))
|
| 50 |
-
# posetemp[:3,:3] = np.matmul(np.eye(3),
|
| 51 |
-
# np.matmul(np.array([[np.cos(th), 0, np.sin(th)], [0, 1, 0], [-np.sin(th), 0, np.cos(th)]]), np.array([[1, 0, 0], [0, np.cos(phi), -np.sin(phi)], [0, np.sin(phi), np.cos(phi)]])))
|
| 52 |
-
# posetemp[:3,3:4] = np.array([0,0,1]).reshape(3,1) # * scale # Transition vector
|
| 53 |
-
# render_poses.append(posetemp)
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
rot_cam=viewangle/3
|
| 57 |
-
for i,j in zip([ang,2*ang,3*ang,2*ang,ang,0,-ang,-2*ang,-3*ang,-2*ang,-ang,0,ang,2*ang,3*ang,2*ang,ang,0], [0,0,0,ang,2*ang,3*ang,2*ang,ang,0,-ang,-2*ang,-3*ang,-2*ang,-ang,0,0,0,0]):
|
| 58 |
-
th, phi = i/180*np.pi, j/180*np.pi
|
| 59 |
-
posetemp = np.zeros((3, 4))
|
| 60 |
-
posetemp[:3,:3] = np.matmul(np.array([[np.cos(rot_cam/180*np.pi), 0, np.sin(rot_cam/180*np.pi)], [0, 1, 0], [-np.sin(rot_cam/180*np.pi), 0, np.cos(rot_cam/180*np.pi)]]),
|
| 61 |
-
np.matmul(np.array([[np.cos(th), 0, np.sin(th)], [0, 1, 0], [-np.sin(th), 0, np.cos(th)]]), np.array([[1, 0, 0], [0, np.cos(phi), -np.sin(phi)], [0, np.sin(phi), np.cos(phi)]]))) # Turn left
|
| 62 |
-
posetemp[:3,3:4] = np.array([0,0,0]).reshape(3,1) # * scale # Transition vector
|
| 63 |
-
render_poses.append(posetemp)
|
| 64 |
-
|
| 65 |
-
for i,j in zip([-ang,-2*ang,-3*ang,-2*ang,-ang,0,ang,2*ang,3*ang,2*ang,ang,0,-ang,-2*ang,-3*ang,-2*ang,-ang,0], [0,0,0,ang,ang,ang,ang,ang,0,-ang,-ang,-ang,-ang,-ang,0,0,0,0]):
|
| 66 |
-
th, phi = i/180*np.pi, j/180*np.pi
|
| 67 |
-
posetemp = np.zeros((3, 4))
|
| 68 |
-
posetemp[:3,:3] = np.matmul(np.array([[np.cos(rot_cam/180*np.pi), 0, np.sin(rot_cam/180*np.pi)], [0, 1, 0], [-np.sin(rot_cam/180*np.pi), 0, np.cos(rot_cam/180*np.pi)]]),
|
| 69 |
-
np.matmul(np.array([[np.cos(-3*ang/180*np.pi), 0, np.sin(-3*ang/180*np.pi)], [0, 1, 0], [-np.sin(-3*ang/180*np.pi), 0, np.cos(-3*ang/180*np.pi)]]),
|
| 70 |
-
np.matmul(np.array([[np.cos(th), 0, np.sin(th)], [0, 1, 0], [-np.sin(th), 0, np.cos(th)]]), np.array([[1, 0, 0], [0, np.cos(phi), -np.sin(phi)], [0, np.sin(phi), np.cos(phi)]]))))
|
| 71 |
-
posetemp[:3,3:4] = np.array([0,0,1]).reshape(3,1) # * scale # Transition vector
|
| 72 |
-
render_poses.append(posetemp)
|
| 73 |
-
|
| 74 |
-
for i,j in zip([ang,2*ang,3*ang,2*ang,ang,0,-ang,-2*ang,-3*ang,-2*ang,-ang,0,ang,2*ang,3*ang,2*ang,ang,0], [0,0,0,ang,ang,ang,ang,ang,0,-ang,-ang,-ang,-ang,-ang,0,0,0,0]):
|
| 75 |
-
th, phi = i/180*np.pi, j/180*np.pi
|
| 76 |
-
posetemp = np.zeros((3, 4))
|
| 77 |
-
posetemp[:3,:3] = np.matmul(np.array([[np.cos(rot_cam/180*np.pi), 0, np.sin(rot_cam/180*np.pi)], [0, 1, 0], [-np.sin(rot_cam/180*np.pi), 0, np.cos(rot_cam/180*np.pi)]]),
|
| 78 |
-
np.matmul(np.array([[np.cos(3*ang/180*np.pi), 0, np.sin(3*ang/180*np.pi)], [0, 1, 0], [-np.sin(3*ang/180*np.pi), 0, np.cos(3*ang/180*np.pi)]]),
|
| 79 |
-
np.matmul(np.array([[np.cos(th), 0, np.sin(th)], [0, 1, 0], [-np.sin(th), 0, np.cos(th)]]), np.array([[1, 0, 0], [0, np.cos(phi), -np.sin(phi)], [0, np.sin(phi), np.cos(phi)]]))))
|
| 80 |
-
posetemp[:3,3:4] = np.array([0,0,-1]).reshape(3,1) # * scale # Transition vector
|
| 81 |
-
render_poses.append(posetemp)
|
| 82 |
-
|
| 83 |
-
# for i,j in zip([ang,2*ang,3*ang,2*ang,ang,0,-ang,-2*ang,-3*ang,-2*ang,-ang,0,ang,2*ang,3*ang,2*ang,ang,0], [0,0,0,ang,2*ang,3*ang,2*ang,ang,0,-ang,-2*ang,-3*ang,-2*ang,-ang,0,0,0,0]):
|
| 84 |
-
# th, phi = i/180*np.pi, j/180*np.pi
|
| 85 |
-
# posetemp = np.zeros((3, 4))
|
| 86 |
-
# posetemp[:3,:3] = np.matmul(np.array([[np.cos(rot_cam/180*np.pi), 0, np.sin(rot_cam/180*np.pi)], [0, 1, 0], [-np.sin(rot_cam/180*np.pi), 0, np.cos(rot_cam/180*np.pi)]]),
|
| 87 |
-
# np.matmul(np.array([[np.cos(th), 0, np.sin(th)], [0, 1, 0], [-np.sin(th), 0, np.cos(th)]]), np.array([[1, 0, 0], [0, np.cos(phi), -np.sin(phi)], [0, np.sin(phi), np.cos(phi)]])))
|
| 88 |
-
# posetemp[:3,3:4] = np.array([1,0,0]).reshape(3,1) # * scale # Transition vector
|
| 89 |
-
# render_poses.append(posetemp)
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
rot_cam=viewangle*2/3
|
| 93 |
-
for i,j in zip([ang,2*ang,3*ang,2*ang,ang,0,-ang,-2*ang,-3*ang,-2*ang,-ang,0,ang,2*ang,3*ang,2*ang,ang,0], [0,0,0,ang,2*ang,3*ang,2*ang,ang,0,-ang,-2*ang,-3*ang,-2*ang,-ang,0,0,0,0]):
|
| 94 |
-
th, phi = i/180*np.pi, j/180*np.pi
|
| 95 |
-
posetemp = np.zeros((3, 4))
|
| 96 |
-
posetemp[:3,:3] = np.matmul(np.array([[np.cos(rot_cam/180*np.pi), 0, np.sin(rot_cam/180*np.pi)], [0, 1, 0], [-np.sin(rot_cam/180*np.pi), 0, np.cos(rot_cam/180*np.pi)]]),
|
| 97 |
-
np.matmul(np.array([[np.cos(th), 0, np.sin(th)], [0, 1, 0], [-np.sin(th), 0, np.cos(th)]]), np.array([[1, 0, 0], [0, np.cos(phi), -np.sin(phi)], [0, np.sin(phi), np.cos(phi)]]))) # Turn left
|
| 98 |
-
posetemp[:3,3:4] = np.array([0,0,0]).reshape(3,1) # * scale # Transition vector
|
| 99 |
-
render_poses.append(posetemp)
|
| 100 |
-
|
| 101 |
-
for i,j in zip([-ang,-2*ang,-3*ang,-2*ang,-ang,0,ang,2*ang,3*ang,2*ang,ang,0,-ang,-2*ang,-3*ang,-2*ang,-ang,0], [0,0,0,ang,ang,ang,ang,ang,0,-ang,-ang,-ang,-ang,-ang,0,0,0,0]):
|
| 102 |
-
th, phi = i/180*np.pi, j/180*np.pi
|
| 103 |
-
posetemp = np.zeros((3, 4))
|
| 104 |
-
posetemp[:3,:3] = np.matmul(np.array([[np.cos(rot_cam/180*np.pi), 0, np.sin(rot_cam/180*np.pi)], [0, 1, 0], [-np.sin(rot_cam/180*np.pi), 0, np.cos(rot_cam/180*np.pi)]]),
|
| 105 |
-
np.matmul(np.array([[np.cos(-3*ang/180*np.pi), 0, np.sin(-3*ang/180*np.pi)], [0, 1, 0], [-np.sin(-3*ang/180*np.pi), 0, np.cos(-3*ang/180*np.pi)]]),
|
| 106 |
-
np.matmul(np.array([[np.cos(th), 0, np.sin(th)], [0, 1, 0], [-np.sin(th), 0, np.cos(th)]]), np.array([[1, 0, 0], [0, np.cos(phi), -np.sin(phi)], [0, np.sin(phi), np.cos(phi)]]))))
|
| 107 |
-
posetemp[:3,3:4] = np.array([-1,0,0]).reshape(3,1) # * scale # Transition vector
|
| 108 |
-
render_poses.append(posetemp)
|
| 109 |
-
|
| 110 |
-
for i,j in zip([ang,2*ang,3*ang,2*ang,ang,0,-ang,-2*ang,-3*ang,-2*ang,-ang,0,ang,2*ang,3*ang,2*ang,ang,0], [0,0,0,ang,ang,ang,ang,ang,0,-ang,-ang,-ang,-ang,-ang,0,0,0,0]):
|
| 111 |
-
th, phi = i/180*np.pi, j/180*np.pi
|
| 112 |
-
posetemp = np.zeros((3, 4))
|
| 113 |
-
posetemp[:3,:3] = np.matmul(np.array([[np.cos(rot_cam/180*np.pi), 0, np.sin(rot_cam/180*np.pi)], [0, 1, 0], [-np.sin(rot_cam/180*np.pi), 0, np.cos(rot_cam/180*np.pi)]]),
|
| 114 |
-
np.matmul(np.array([[np.cos(3*ang/180*np.pi), 0, np.sin(3*ang/180*np.pi)], [0, 1, 0], [-np.sin(3*ang/180*np.pi), 0, np.cos(3*ang/180*np.pi)]]),
|
| 115 |
-
np.matmul(np.array([[np.cos(th), 0, np.sin(th)], [0, 1, 0], [-np.sin(th), 0, np.cos(th)]]), np.array([[1, 0, 0], [0, np.cos(phi), -np.sin(phi)], [0, np.sin(phi), np.cos(phi)]]))))
|
| 116 |
-
posetemp[:3,3:4] = np.array([1,0,0]).reshape(3,1) # * scale # Transition vector
|
| 117 |
-
render_poses.append(posetemp)
|
| 118 |
-
|
| 119 |
-
# for i,j in zip([ang,2*ang,3*ang,2*ang,ang,0,-ang,-2*ang,-3*ang,-2*ang,-ang,0,ang,2*ang,3*ang,2*ang,ang,0], [0,0,0,ang,2*ang,3*ang,2*ang,ang,0,-ang,-2*ang,-3*ang,-2*ang,-ang,0,0,0,0]):
|
| 120 |
-
# th, phi = i/180*np.pi, j/180*np.pi
|
| 121 |
-
# posetemp = np.zeros((3, 4))
|
| 122 |
-
# posetemp[:3,:3] = np.matmul(np.array([[np.cos(rot_cam/180*np.pi), 0, np.sin(rot_cam/180*np.pi)], [0, 1, 0], [-np.sin(rot_cam/180*np.pi), 0, np.cos(rot_cam/180*np.pi)]]),
|
| 123 |
-
# np.matmul(np.array([[np.cos(th), 0, np.sin(th)], [0, 1, 0], [-np.sin(th), 0, np.cos(th)]]), np.array([[1, 0, 0], [0, np.cos(phi), -np.sin(phi)], [0, np.sin(phi), np.cos(phi)]])))
|
| 124 |
-
# posetemp[:3,3:4] = np.array([0,0,-1]).reshape(3,1) # * scale # Transition vector
|
| 125 |
-
# render_poses.append(posetemp)
|
| 126 |
-
|
| 127 |
-
rot_cam=viewangle
|
| 128 |
-
for i,j in zip([ang,2*ang,3*ang,2*ang,ang,0,-ang,-2*ang,-3*ang,-2*ang,-ang,0,ang,2*ang,3*ang,2*ang,ang,0], [0,0,0,ang,2*ang,3*ang,2*ang,ang,0,-ang,-2*ang,-3*ang,-2*ang,-ang,0,0,0,0]):
|
| 129 |
-
th, phi = i/180*np.pi, j/180*np.pi
|
| 130 |
-
posetemp = np.zeros((3, 4))
|
| 131 |
-
posetemp[:3,:3] = np.matmul(np.array([[np.cos(rot_cam/180*np.pi), 0, np.sin(rot_cam/180*np.pi)], [0, 1, 0], [-np.sin(rot_cam/180*np.pi), 0, np.cos(rot_cam/180*np.pi)]]),
|
| 132 |
-
np.matmul(np.array([[np.cos(th), 0, np.sin(th)], [0, 1, 0], [-np.sin(th), 0, np.cos(th)]]), np.array([[1, 0, 0], [0, np.cos(phi), -np.sin(phi)], [0, np.sin(phi), np.cos(phi)]]))) # Turn left
|
| 133 |
-
posetemp[:3,3:4] = np.array([0,0,0]).reshape(3,1) # * scale # Transition vector
|
| 134 |
-
render_poses.append(posetemp)
|
| 135 |
-
|
| 136 |
-
for i,j in zip([-ang,-2*ang,-3*ang,-2*ang,-ang,0,ang,2*ang,3*ang,2*ang,ang,0,-ang,-2*ang,-3*ang,-2*ang,-ang,0], [0,0,0,ang,ang,ang,ang,ang,0,-ang,-ang,-ang,-ang,-ang,0,0,0,0]):
|
| 137 |
-
th, phi = i/180*np.pi, j/180*np.pi
|
| 138 |
-
posetemp = np.zeros((3, 4))
|
| 139 |
-
posetemp[:3,:3] = np.matmul(np.array([[np.cos(rot_cam/180*np.pi), 0, np.sin(rot_cam/180*np.pi)], [0, 1, 0], [-np.sin(rot_cam/180*np.pi), 0, np.cos(rot_cam/180*np.pi)]]),
|
| 140 |
-
np.matmul(np.array([[np.cos(-3*ang/180*np.pi), 0, np.sin(-3*ang/180*np.pi)], [0, 1, 0], [-np.sin(-3*ang/180*np.pi), 0, np.cos(-3*ang/180*np.pi)]]),
|
| 141 |
-
np.matmul(np.array([[np.cos(th), 0, np.sin(th)], [0, 1, 0], [-np.sin(th), 0, np.cos(th)]]), np.array([[1, 0, 0], [0, np.cos(phi), -np.sin(phi)], [0, np.sin(phi), np.cos(phi)]]))))
|
| 142 |
-
posetemp[:3,3:4] = np.array([0,0,-1]).reshape(3,1) # * scale # Transition vector
|
| 143 |
-
render_poses.append(posetemp)
|
| 144 |
-
|
| 145 |
-
for i,j in zip([ang,2*ang,3*ang,2*ang,ang,0,-ang,-2*ang,-3*ang,-2*ang,-ang,0,ang,2*ang,3*ang,2*ang,ang,0], [0,0,0,ang,ang,ang,ang,ang,0,-ang,-ang,-ang,-ang,-ang,0,0,0,0]):
|
| 146 |
-
th, phi = i/180*np.pi, j/180*np.pi
|
| 147 |
-
posetemp = np.zeros((3, 4))
|
| 148 |
-
posetemp[:3,:3] = np.matmul(np.array([[np.cos(rot_cam/180*np.pi), 0, np.sin(rot_cam/180*np.pi)], [0, 1, 0], [-np.sin(rot_cam/180*np.pi), 0, np.cos(rot_cam/180*np.pi)]]),
|
| 149 |
-
np.matmul(np.array([[np.cos(3*ang/180*np.pi), 0, np.sin(3*ang/180*np.pi)], [0, 1, 0], [-np.sin(3*ang/180*np.pi), 0, np.cos(3*ang/180*np.pi)]]),
|
| 150 |
-
np.matmul(np.array([[np.cos(th), 0, np.sin(th)], [0, 1, 0], [-np.sin(th), 0, np.cos(th)]]), np.array([[1, 0, 0], [0, np.cos(phi), -np.sin(phi)], [0, np.sin(phi), np.cos(phi)]]))))
|
| 151 |
-
posetemp[:3,3:4] = np.array([0,0,1]).reshape(3,1) # * scale # Transition vector
|
| 152 |
-
render_poses.append(posetemp)
|
| 153 |
-
|
| 154 |
-
# for i,j in zip([ang,2*ang,3*ang,2*ang,ang,0,-ang,-2*ang,-3*ang,-2*ang,-ang,0,ang,2*ang,3*ang,2*ang,ang,0], [0,0,0,ang,2*ang,3*ang,2*ang,ang,0,-ang,-2*ang,-3*ang,-2*ang,-ang,0,0,0,0]):
|
| 155 |
-
# th, phi = i/180*np.pi, j/180*np.pi
|
| 156 |
-
# posetemp = np.zeros((3, 4))
|
| 157 |
-
# posetemp[:3,:3] = np.matmul(np.array([[np.cos(rot_cam/180*np.pi), 0, np.sin(rot_cam/180*np.pi)], [0, 1, 0], [-np.sin(rot_cam/180*np.pi), 0, np.cos(rot_cam/180*np.pi)]]),
|
| 158 |
-
# np.matmul(np.array([[np.cos(th), 0, np.sin(th)], [0, 1, 0], [-np.sin(th), 0, np.cos(th)]]), np.array([[1, 0, 0], [0, np.cos(phi), -np.sin(phi)], [0, np.sin(phi), np.cos(phi)]])))
|
| 159 |
-
# posetemp[:3,3:4] = np.array([-1,0,0]).reshape(3,1) # * scale # Transition vector
|
| 160 |
-
# render_poses.append(posetemp)
|
| 161 |
-
|
| 162 |
-
render_poses.append(np.array([[1,0,0,0],[0,1,0,0],[0,0,1,0]]))
|
| 163 |
-
render_poses = np.stack(render_poses, axis=0)
|
| 164 |
-
|
| 165 |
-
return render_poses
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
def generate_seed_360(viewangle, n_views):
|
| 169 |
-
N = n_views
|
| 170 |
-
render_poses = np.zeros((N, 3, 4))
|
| 171 |
-
for i in range(N):
|
| 172 |
-
th = (viewangle/N)*i/180*np.pi
|
| 173 |
-
render_poses[i,:3,:3] = np.array([[np.cos(th), 0, np.sin(th)], [0, 1, 0], [-np.sin(th), 0, np.cos(th)]])
|
| 174 |
-
render_poses[i,:3,3:4] = np.random.randn(3,1)*0.0 # Transition vector
|
| 175 |
-
|
| 176 |
-
return render_poses
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
def generate_seed_360_half(viewangle, n_views):
|
| 180 |
-
N = n_views // 2
|
| 181 |
-
halfangle = viewangle / 2
|
| 182 |
-
render_poses = np.zeros((N*2, 3, 4))
|
| 183 |
-
for i in range(N):
|
| 184 |
-
th = (halfangle/N)*i/180*np.pi
|
| 185 |
-
render_poses[i,:3,:3] = np.array([[np.cos(th), 0, np.sin(th)], [0, 1, 0], [-np.sin(th), 0, np.cos(th)]])
|
| 186 |
-
render_poses[i,:3,3:4] = np.random.randn(3,1)*0.0 # Transition vector
|
| 187 |
-
for i in range(N):
|
| 188 |
-
th = -(halfangle/N)*i/180*np.pi
|
| 189 |
-
render_poses[i+N,:3,:3] = np.array([[np.cos(th), 0, np.sin(th)], [0, 1, 0], [-np.sin(th), 0, np.cos(th)]])
|
| 190 |
-
render_poses[i+N,:3,3:4] = np.random.randn(3,1)*0.0 # Transition vector
|
| 191 |
-
return render_poses
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
def generate_seed_preset():
|
| 195 |
-
degsum = 60
|
| 196 |
-
thlist = np.concatenate((np.linspace(0, degsum, 4), np.linspace(0, -degsum, 4)[1:], np.linspace(0, degsum, 4), np.linspace(0, -degsum, 4)[1:], np.linspace(0, degsum, 4), np.linspace(0, -degsum, 4)[1:]))
|
| 197 |
-
philist = np.concatenate((np.linspace(0,0,7), np.linspace(-22.5,-22.5,7), np.linspace(22.5,22.5,7)))
|
| 198 |
-
assert len(thlist) == len(philist)
|
| 199 |
-
|
| 200 |
-
render_poses = np.zeros((len(thlist), 3, 4))
|
| 201 |
-
for i in range(len(thlist)):
|
| 202 |
-
th = thlist[i]
|
| 203 |
-
phi = philist[i]
|
| 204 |
-
|
| 205 |
-
render_poses[i,:3,:3] = np.matmul(np.array([[np.cos(th/180*np.pi), 0, -np.sin(th/180*np.pi)], [0, 1, 0], [np.sin(th/180*np.pi), 0, np.cos(th/180*np.pi)]]), np.array([[1, 0, 0], [0, np.cos(phi/180*np.pi), -np.sin(phi/180*np.pi)], [0, np.sin(phi/180*np.pi), np.cos(phi/180*np.pi)]]))
|
| 206 |
-
render_poses[i,:3,3:4] = np.zeros((3,1))
|
| 207 |
-
|
| 208 |
-
return render_poses
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
def generate_seed_newpreset():
|
| 212 |
-
degsum = 60
|
| 213 |
-
thlist = np.concatenate((np.linspace(0, degsum, 4), np.linspace(0, -degsum, 4)[1:], np.linspace(0, degsum, 4), np.linspace(0, -degsum, 4)[1:]))
|
| 214 |
-
philist = np.concatenate((np.linspace(0,0,7), np.linspace(22.5,22.5,7)))
|
| 215 |
-
assert len(thlist) == len(philist)
|
| 216 |
-
|
| 217 |
-
render_poses = np.zeros((len(thlist), 3, 4))
|
| 218 |
-
for i in range(len(thlist)):
|
| 219 |
-
th = thlist[i]
|
| 220 |
-
phi = philist[i]
|
| 221 |
-
|
| 222 |
-
render_poses[i,:3,:3] = np.matmul(np.array([[np.cos(th/180*np.pi), 0, -np.sin(th/180*np.pi)], [0, 1, 0], [np.sin(th/180*np.pi), 0, np.cos(th/180*np.pi)]]), np.array([[1, 0, 0], [0, np.cos(phi/180*np.pi), -np.sin(phi/180*np.pi)], [0, np.sin(phi/180*np.pi), np.cos(phi/180*np.pi)]]))
|
| 223 |
-
render_poses[i,:3,3:4] = np.zeros((3,1))
|
| 224 |
-
|
| 225 |
-
return render_poses
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
def generate_seed_horizon():
|
| 229 |
-
movement = np.linspace(0, 5, 11)
|
| 230 |
-
render_poses = np.zeros((len(movement), 3, 4))
|
| 231 |
-
for i in range(len(movement)):
|
| 232 |
-
|
| 233 |
-
render_poses[i,:3,:3] = np.eye(3)
|
| 234 |
-
render_poses[i,:3,3:4] = np.array([[-movement[i]], [0], [0]])
|
| 235 |
-
|
| 236 |
-
return render_poses
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
def generate_seed_backward():
|
| 240 |
-
movement = np.linspace(0, 5, 11)
|
| 241 |
-
render_poses = np.zeros((len(movement), 3, 4))
|
| 242 |
-
for i in range(len(movement)):
|
| 243 |
-
render_poses[i,:3,:3] = np.eye(3)
|
| 244 |
-
render_poses[i,:3,3:4] = np.array([[0], [0], [movement[i]]])
|
| 245 |
-
return render_poses
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
def generate_seed_arc():
|
| 249 |
-
degree = 5
|
| 250 |
-
# thlist = np.array([degree, 0, 0, 0, -degree])
|
| 251 |
-
thlist = np.arange(0, degree, 5) + np.arange(0, -degree, 5)[1:]
|
| 252 |
-
phi = 0
|
| 253 |
-
|
| 254 |
-
render_poses = np.zeros((len(thlist), 3, 4))
|
| 255 |
-
for i in range(len(thlist)):
|
| 256 |
-
th = thlist[i]
|
| 257 |
-
d = 4.3 # 얘를 조절하면 초기 자세 기준으로 앞으로 d만큼 떨어진 점을 기준으로 도는 자세가 만들어짐
|
| 258 |
-
|
| 259 |
-
render_poses[i,:3,:3] = np.matmul(np.array([[np.cos(th/180*np.pi), 0, -np.sin(th/180*np.pi)], [0, 1, 0], [np.sin(th/180*np.pi), 0, np.cos(th/180*np.pi)]]), np.array([[1, 0, 0], [0, np.cos(phi/180*np.pi), -np.sin(phi/180*np.pi)], [0, np.sin(phi/180*np.pi), np.cos(phi/180*np.pi)]]))
|
| 260 |
-
render_poses[0,:3,3:4] = np.array([d*np.sin(th/180*np.pi), 0, d-d*np.cos(th/180*np.pi)]).reshape(3,1) + np.array([0, d*np.sin(phi/180*np.pi), d-d*np.cos(phi/180*np.pi)]).reshape(3,1)# Transition vector
|
| 261 |
-
# render_poses[i,:3,3:4] = np.zeros((3,1))
|
| 262 |
-
|
| 263 |
-
return render_poses
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
def generate_seed_hemisphere(center_depth, degree=5):
|
| 267 |
-
degree = 5
|
| 268 |
-
thlist = np.array([degree, 0, 0, 0, -degree])
|
| 269 |
-
philist = np.array([0, -degree, 0, degree, 0])
|
| 270 |
-
assert len(thlist) == len(philist)
|
| 271 |
-
|
| 272 |
-
render_poses = np.zeros((len(thlist), 3, 4))
|
| 273 |
-
for i in range(len(thlist)):
|
| 274 |
-
th = thlist[i]
|
| 275 |
-
phi = philist[i]
|
| 276 |
-
# curr_pose = np.zeros((1, 3, 4))
|
| 277 |
-
d = center_depth # 얘를 조절하면 초기 자세 기준으로 앞으로 d만큼 떨어진 점을 기준으로 도는 자세가 만들어짐
|
| 278 |
-
|
| 279 |
-
render_poses[i,:3,:3] = np.matmul(np.array([[np.cos(th/180*np.pi), 0, -np.sin(th/180*np.pi)], [0, 1, 0], [np.sin(th/180*np.pi), 0, np.cos(th/180*np.pi)]]), np.array([[1, 0, 0], [0, np.cos(phi/180*np.pi), -np.sin(phi/180*np.pi)], [0, np.sin(phi/180*np.pi), np.cos(phi/180*np.pi)]]))
|
| 280 |
-
render_poses[0,:3,3:4] = np.array([d*np.sin(th/180*np.pi), 0, d-d*np.cos(th/180*np.pi)]).reshape(3,1) + np.array([0, d*np.sin(phi/180*np.pi), d-d*np.cos(phi/180*np.pi)]).reshape(3,1)# Transition vector
|
| 281 |
-
# render_poses[i,:3,3:4] = np.zeros((3,1))
|
| 282 |
-
|
| 283 |
-
return render_poses
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
def generate_seed_hemisphere_(degree, nviews):
|
| 287 |
-
# thlist = np.array([degree, 0, 0, 0, -degree])
|
| 288 |
-
# philist = np.array([0, -degree, 0, degree, 0])
|
| 289 |
-
thlist = degree * np.sin(np.linspace(0, 2*np.pi, nviews))
|
| 290 |
-
philist = degree * np.cos(np.linspace(0, 2*np.pi, nviews))
|
| 291 |
-
assert len(thlist) == len(philist)
|
| 292 |
-
|
| 293 |
-
render_poses = np.zeros((len(thlist), 3, 4))
|
| 294 |
-
for i in range(len(thlist)):
|
| 295 |
-
th = thlist[i]
|
| 296 |
-
phi = philist[i]
|
| 297 |
-
# curr_pose = np.zeros((1, 3, 4))
|
| 298 |
-
d = 4.3 # 얘를 조절하면 초기 자세 기준으로 앞으로 d만큼 떨어진 점을 기준으로 도는 자세가 만들어짐
|
| 299 |
-
|
| 300 |
-
render_poses[i,:3,:3] = np.matmul(np.array([[np.cos(th/180*np.pi), 0, -np.sin(th/180*np.pi)], [0, 1, 0], [np.sin(th/180*np.pi), 0, np.cos(th/180*np.pi)]]), np.array([[1, 0, 0], [0, np.cos(phi/180*np.pi), -np.sin(phi/180*np.pi)], [0, np.sin(phi/180*np.pi), np.cos(phi/180*np.pi)]]))
|
| 301 |
-
render_poses[0,:3,3:4] = np.array([d*np.sin(th/180*np.pi), 0, d-d*np.cos(th/180*np.pi)]).reshape(3,1) + np.array([0, d*np.sin(phi/180*np.pi), d-d*np.cos(phi/180*np.pi)]).reshape(3,1)# Transition vector
|
| 302 |
-
return render_poses
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
def generate_seed_nothing():
|
| 306 |
-
degree = 5
|
| 307 |
-
thlist = np.array([0])
|
| 308 |
-
philist = np.array([0])
|
| 309 |
-
assert len(thlist) == len(philist)
|
| 310 |
-
|
| 311 |
-
render_poses = np.zeros((len(thlist), 3, 4))
|
| 312 |
-
for i in range(len(thlist)):
|
| 313 |
-
th = thlist[i]
|
| 314 |
-
phi = philist[i]
|
| 315 |
-
# curr_pose = np.zeros((1, 3, 4))
|
| 316 |
-
d = 4.3 # 얘를 조절하면 초기 자세 기준으로 앞으로 d만큼 떨어진 점을 기준으로 도는 자세가 만들어짐
|
| 317 |
-
|
| 318 |
-
render_poses[i,:3,:3] = np.matmul(np.array([[np.cos(th/180*np.pi), 0, -np.sin(th/180*np.pi)], [0, 1, 0], [np.sin(th/180*np.pi), 0, np.cos(th/180*np.pi)]]), np.array([[1, 0, 0], [0, np.cos(phi/180*np.pi), -np.sin(phi/180*np.pi)], [0, np.sin(phi/180*np.pi), np.cos(phi/180*np.pi)]]))
|
| 319 |
-
render_poses[0,:3,3:4] = np.array([d*np.sin(th/180*np.pi), 0, d-d*np.cos(th/180*np.pi)]).reshape(3,1) + np.array([0, d*np.sin(phi/180*np.pi), d-d*np.cos(phi/180*np.pi)]).reshape(3,1)# Transition vector
|
| 320 |
-
# render_poses[i,:3,3:4] = np.zeros((3,1))
|
| 321 |
-
|
| 322 |
-
return render_poses
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
def generate_seed_lookaround():
|
| 326 |
-
degsum = 60
|
| 327 |
-
thlist = np.concatenate((np.linspace(0, degsum, 4), np.linspace(0, -degsum, 4)[1:], np.linspace(0, degsum, 4), np.linspace(0, -degsum, 4)[1:], np.linspace(0, degsum, 4), np.linspace(0, -degsum, 4)[1:]))
|
| 328 |
-
philist = np.concatenate((np.linspace(0,0,7), np.linspace(22.5,22.5,7), np.linspace(-22.5,-22.5,7)))
|
| 329 |
-
assert len(thlist) == len(philist)
|
| 330 |
-
|
| 331 |
-
render_poses = []
|
| 332 |
-
# up / left --> right
|
| 333 |
-
thlist = np.linspace(-degsum, degsum, 2*degsum+1)
|
| 334 |
-
for i in range(len(thlist)):
|
| 335 |
-
render_pose = np.zeros((3,4))
|
| 336 |
-
th = thlist[i]
|
| 337 |
-
phi = 22.5
|
| 338 |
-
|
| 339 |
-
render_pose[:3,:3] = np.matmul(np.array([[np.cos(th/180*np.pi), 0, -np.sin(th/180*np.pi)], [0, 1, 0], [np.sin(th/180*np.pi), 0, np.cos(th/180*np.pi)]]), np.array([[1, 0, 0], [0, np.cos(phi/180*np.pi), -np.sin(phi/180*np.pi)], [0, np.sin(phi/180*np.pi), np.cos(phi/180*np.pi)]]))
|
| 340 |
-
render_pose[:3,3:4] = np.zeros((3,1))
|
| 341 |
-
render_poses.append(render_pose)
|
| 342 |
-
|
| 343 |
-
# right / up --> center
|
| 344 |
-
phlist = np.linspace(22.5, 0, 23)
|
| 345 |
-
# Exclude first frame (same as last frame before)
|
| 346 |
-
phlist = phlist[1:]
|
| 347 |
-
for i in range(len(phlist)):
|
| 348 |
-
render_pose = np.zeros((3,4))
|
| 349 |
-
th = degsum
|
| 350 |
-
phi = phlist[i]
|
| 351 |
-
|
| 352 |
-
render_pose[:3,:3] = np.matmul(np.array([[np.cos(th/180*np.pi), 0, -np.sin(th/180*np.pi)], [0, 1, 0], [np.sin(th/180*np.pi), 0, np.cos(th/180*np.pi)]]), np.array([[1, 0, 0], [0, np.cos(phi/180*np.pi), -np.sin(phi/180*np.pi)], [0, np.sin(phi/180*np.pi), np.cos(phi/180*np.pi)]]))
|
| 353 |
-
render_pose[:3,3:4] = np.zeros((3,1))
|
| 354 |
-
render_poses.append(render_pose)
|
| 355 |
-
|
| 356 |
-
# center / right --> left
|
| 357 |
-
thlist = np.linspace(degsum, -degsum, 2*degsum+1)
|
| 358 |
-
thlist = thlist[1:]
|
| 359 |
-
for i in range(len(thlist)):
|
| 360 |
-
render_pose = np.zeros((3,4))
|
| 361 |
-
th = thlist[i]
|
| 362 |
-
phi = 0
|
| 363 |
-
|
| 364 |
-
render_pose[:3,:3] = np.matmul(np.array([[np.cos(th/180*np.pi), 0, -np.sin(th/180*np.pi)], [0, 1, 0], [np.sin(th/180*np.pi), 0, np.cos(th/180*np.pi)]]), np.array([[1, 0, 0], [0, np.cos(phi/180*np.pi), -np.sin(phi/180*np.pi)], [0, np.sin(phi/180*np.pi), np.cos(phi/180*np.pi)]]))
|
| 365 |
-
render_pose[:3,3:4] = np.zeros((3,1))
|
| 366 |
-
render_poses.append(render_pose)
|
| 367 |
-
|
| 368 |
-
# left / center --> down
|
| 369 |
-
phlist = np.linspace(0, -22.5, 23)
|
| 370 |
-
phlist = phlist[1:]
|
| 371 |
-
for i in range(len(phlist)):
|
| 372 |
-
render_pose = np.zeros((3,4))
|
| 373 |
-
th = -degsum
|
| 374 |
-
phi = phlist[i]
|
| 375 |
-
|
| 376 |
-
render_pose[:3,:3] = np.matmul(np.array([[np.cos(th/180*np.pi), 0, -np.sin(th/180*np.pi)], [0, 1, 0], [np.sin(th/180*np.pi), 0, np.cos(th/180*np.pi)]]), np.array([[1, 0, 0], [0, np.cos(phi/180*np.pi), -np.sin(phi/180*np.pi)], [0, np.sin(phi/180*np.pi), np.cos(phi/180*np.pi)]]))
|
| 377 |
-
render_pose[:3,3:4] = np.zeros((3,1))
|
| 378 |
-
render_poses.append(render_pose)
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
thlist = np.linspace(-degsum, degsum, 2*degsum+1)
|
| 382 |
-
for i in range(len(thlist)):
|
| 383 |
-
render_pose = np.zeros((3,4))
|
| 384 |
-
th = thlist[i]
|
| 385 |
-
phi = -22.5
|
| 386 |
-
|
| 387 |
-
render_pose[:3,:3] = np.matmul(np.array([[np.cos(th/180*np.pi), 0, -np.sin(th/180*np.pi)], [0, 1, 0], [np.sin(th/180*np.pi), 0, np.cos(th/180*np.pi)]]), np.array([[1, 0, 0], [0, np.cos(phi/180*np.pi), -np.sin(phi/180*np.pi)], [0, np.sin(phi/180*np.pi), np.cos(phi/180*np.pi)]]))
|
| 388 |
-
render_pose[:3,3:4] = np.zeros((3,1))
|
| 389 |
-
render_poses.append(render_pose)
|
| 390 |
-
|
| 391 |
-
return render_poses
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
def generate_seed_lookdown():
|
| 395 |
-
degsum = 60
|
| 396 |
-
thlist = np.concatenate((np.linspace(0, degsum, 4), np.linspace(0, -degsum, 4)[1:], np.linspace(0, degsum, 4), np.linspace(0, -degsum, 4)[1:]))
|
| 397 |
-
philist = np.concatenate((np.linspace(0,0,7), np.linspace(-22.5,-22.5,7)))
|
| 398 |
-
assert len(thlist) == len(philist)
|
| 399 |
-
|
| 400 |
-
render_poses = np.zeros((len(thlist), 3, 4))
|
| 401 |
-
for i in range(len(thlist)):
|
| 402 |
-
th = thlist[i]
|
| 403 |
-
phi = philist[i]
|
| 404 |
-
|
| 405 |
-
render_poses[i,:3,:3] = np.matmul(np.array([[np.cos(th/180*np.pi), 0, -np.sin(th/180*np.pi)], [0, 1, 0], [np.sin(th/180*np.pi), 0, np.cos(th/180*np.pi)]]), np.array([[1, 0, 0], [0, np.cos(phi/180*np.pi), -np.sin(phi/180*np.pi)], [0, np.sin(phi/180*np.pi), np.cos(phi/180*np.pi)]]))
|
| 406 |
-
render_poses[i,:3,3:4] = np.zeros((3,1))
|
| 407 |
-
|
| 408 |
-
return render_poses
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
def generate_seed_back():
|
| 412 |
-
movement = np.linspace(0, 5, 101)
|
| 413 |
-
render_poses = [] # np.zeros((len(movement), 3, 4))
|
| 414 |
-
for i in range(len(movement)):
|
| 415 |
-
render_pose = np.zeros((3,4))
|
| 416 |
-
render_pose[:3,:3] = np.eye(3)
|
| 417 |
-
render_pose[:3,3:4] = np.array([[0], [0], [movement[i]]])
|
| 418 |
-
render_poses.append(render_pose)
|
| 419 |
-
|
| 420 |
-
movement = np.linspace(5, 0, 101)
|
| 421 |
-
movement = movement[1:]
|
| 422 |
-
for i in range(len(movement)):
|
| 423 |
-
render_pose = np.zeros((3,4))
|
| 424 |
-
render_pose[:3,:3] = np.eye(3)
|
| 425 |
-
render_pose[:3,3:4] = np.array([[0], [0], [movement[i]]])
|
| 426 |
-
render_poses.append(render_pose)
|
| 427 |
-
|
| 428 |
-
return render_poses
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
def generate_seed_llff(degree, nviews, round=4, d=2.3):
|
| 432 |
-
assert round%4==0
|
| 433 |
-
# thlist = np.array([degree, 0, 0, 0, -degree])
|
| 434 |
-
# philist = np.array([0, -degree, 0, degree, 0])
|
| 435 |
-
# d = 2.3
|
| 436 |
-
thlist = degree * np.sin(np.linspace(0, 2*np.pi*round, nviews))
|
| 437 |
-
philist = degree * np.cos(np.linspace(0, 2*np.pi*round, nviews))
|
| 438 |
-
zlist = d/15 * np.sin(np.linspace(0, 2*np.pi*round//4, nviews))
|
| 439 |
-
assert len(thlist) == len(philist)
|
| 440 |
-
|
| 441 |
-
render_poses = np.zeros((len(thlist), 3, 4))
|
| 442 |
-
for i in range(len(thlist)):
|
| 443 |
-
th = thlist[i]
|
| 444 |
-
phi = philist[i]
|
| 445 |
-
z = zlist[i]
|
| 446 |
-
# curr_pose = np.zeros((1, 3, 4))
|
| 447 |
-
# d = 4.3 # 얘를 조절하면 초기 자세 기준으로 앞으로 d만큼 떨어진 점을 기준으로 도는 자세가 만들어짐
|
| 448 |
-
|
| 449 |
-
render_poses[i,:3,:3] = np.matmul(np.array([[np.cos(th/180*np.pi), 0, -np.sin(th/180*np.pi)], [0, 1, 0], [np.sin(th/180*np.pi), 0, np.cos(th/180*np.pi)]]), np.array([[1, 0, 0], [0, np.cos(phi/180*np.pi), -np.sin(phi/180*np.pi)], [0, np.sin(phi/180*np.pi), np.cos(phi/180*np.pi)]]))
|
| 450 |
-
render_poses[i,:3,3:4] = np.array([d*np.sin(th/180*np.pi), 0, -z+d-d*np.cos(th/180*np.pi)]).reshape(3,1) + np.array([0, d*np.sin(phi/180*np.pi), -z+d-d*np.cos(phi/180*np.pi)]).reshape(3,1)# Transition vector
|
| 451 |
-
return render_poses
|
| 452 |
-
|
| 453 |
-
|
| 454 |
-
def generate_seed_headbanging(maxdeg, nviews_per_round, round=3, fullround=1):
|
| 455 |
-
radius = np.concatenate((np.linspace(0, maxdeg, nviews_per_round*round), maxdeg*np.ones(nviews_per_round*fullround), np.linspace(maxdeg, 0, nviews_per_round*round)))
|
| 456 |
-
thlist = 2.66*radius * np.sin(np.linspace(0, 2*np.pi*(round+fullround+round), nviews_per_round*(round+fullround+round)))
|
| 457 |
-
philist = radius * np.cos(np.linspace(0, 2*np.pi*(round+fullround+round), nviews_per_round*(round+fullround+round)))
|
| 458 |
-
assert len(thlist) == len(philist)
|
| 459 |
-
|
| 460 |
-
render_poses = np.zeros((len(thlist), 3, 4))
|
| 461 |
-
for i in range(len(thlist)):
|
| 462 |
-
th = thlist[i]
|
| 463 |
-
phi = philist[i]
|
| 464 |
-
|
| 465 |
-
render_poses[i,:3,:3] = np.matmul(np.array([[np.cos(th/180*np.pi), 0, -np.sin(th/180*np.pi)], [0, 1, 0], [np.sin(th/180*np.pi), 0, np.cos(th/180*np.pi)]]), np.array([[1, 0, 0], [0, np.cos(phi/180*np.pi), -np.sin(phi/180*np.pi)], [0, np.sin(phi/180*np.pi), np.cos(phi/180*np.pi)]]))
|
| 466 |
-
render_poses[i,:3,3:4] = np.zeros((3,1))
|
| 467 |
-
|
| 468 |
-
return render_poses
|
| 469 |
-
|
| 470 |
-
|
| 471 |
-
def generate_seed_headbanging_circle(maxdeg, nviews_per_round, round=3, fullround=1):
|
| 472 |
-
radius = np.concatenate((np.linspace(0, maxdeg, nviews_per_round*round), maxdeg*np.ones(nviews_per_round*fullround), np.linspace(maxdeg, 0, nviews_per_round*round)))
|
| 473 |
-
thlist = 2.66*radius * np.sin(np.linspace(0, 2*np.pi*(round+fullround+round), nviews_per_round*(round+fullround+round)))
|
| 474 |
-
philist = radius * np.cos(np.linspace(0, 2*np.pi*(round+fullround+round), nviews_per_round*(round+fullround+round)))
|
| 475 |
-
assert len(thlist) == len(philist)
|
| 476 |
-
|
| 477 |
-
render_poses = np.zeros((len(thlist), 3, 4))
|
| 478 |
-
for i in range(len(thlist)):
|
| 479 |
-
th = thlist[i]
|
| 480 |
-
phi = philist[i]
|
| 481 |
-
|
| 482 |
-
render_poses[i,:3,:3] = np.matmul(np.array([[np.cos(th/180*np.pi), 0, -np.sin(th/180*np.pi)], [0, 1, 0], [np.sin(th/180*np.pi), 0, np.cos(th/180*np.pi)]]), np.array([[1, 0, 0], [0, np.cos(phi/180*np.pi), -np.sin(phi/180*np.pi)], [0, np.sin(phi/180*np.pi), np.cos(phi/180*np.pi)]]))
|
| 483 |
-
render_poses[i,:3,3:4] = np.zeros((3,1))
|
| 484 |
-
|
| 485 |
-
return render_poses
|
| 486 |
-
|
| 487 |
-
|
| 488 |
-
def get_pcdGenPoses(pcdgenpath, argdict={}):
|
| 489 |
-
if pcdgenpath == 'rotate360':
|
| 490 |
-
render_poses = generate_seed_360(360, 10)
|
| 491 |
-
elif pcdgenpath == 'lookaround':
|
| 492 |
-
render_poses = generate_seed_preset()
|
| 493 |
-
elif pcdgenpath == 'moveright':
|
| 494 |
-
render_poses = generate_seed_horizon()
|
| 495 |
-
elif pcdgenpath == 'moveback':
|
| 496 |
-
render_poses = generate_seed_backward()
|
| 497 |
-
elif pcdgenpath == 'arc':
|
| 498 |
-
render_poses = generate_seed_arc()
|
| 499 |
-
elif pcdgenpath == 'lookdown':
|
| 500 |
-
render_poses = generate_seed_newpreset()
|
| 501 |
-
elif pcdgenpath == 'hemisphere':
|
| 502 |
-
render_poses = generate_seed_hemisphere(argdict['center_depth'])
|
| 503 |
-
else:
|
| 504 |
-
raise("Invalid pcdgenpath")
|
| 505 |
-
return render_poses
|
| 506 |
-
|
| 507 |
-
|
| 508 |
-
def get_camerapaths():
|
| 509 |
-
preset_json = {}
|
| 510 |
-
for cam_path in ["back_and_forth", "llff", "headbanging"]:
|
| 511 |
-
if cam_path == 'back_and_forth':
|
| 512 |
-
render_poses = generate_seed_back()
|
| 513 |
-
elif cam_path == 'llff':
|
| 514 |
-
render_poses = generate_seed_llff(5, 400, round=4, d=2)
|
| 515 |
-
elif cam_path == 'headbanging':
|
| 516 |
-
render_poses = generate_seed_headbanging(maxdeg=15, nviews_per_round=180, round=2, fullround=0)
|
| 517 |
-
else:
|
| 518 |
-
raise("Unknown pass")
|
| 519 |
-
|
| 520 |
-
yz_reverse = np.array([[1,0,0], [0,-1,0], [0,0,-1]])
|
| 521 |
-
blender_train_json = {"frames": []}
|
| 522 |
-
for render_pose in render_poses:
|
| 523 |
-
curr_frame = {}
|
| 524 |
-
### Transform world to pixel
|
| 525 |
-
Rw2i = render_pose[:3,:3]
|
| 526 |
-
Tw2i = render_pose[:3,3:4]
|
| 527 |
-
|
| 528 |
-
# Transfrom cam2 to world + change sign of yz axis
|
| 529 |
-
Ri2w = np.matmul(yz_reverse, Rw2i).T
|
| 530 |
-
Ti2w = -np.matmul(Ri2w, np.matmul(yz_reverse, Tw2i))
|
| 531 |
-
Pc2w = np.concatenate((Ri2w, Ti2w), axis=1)
|
| 532 |
-
Pc2w = np.concatenate((Pc2w, np.array([0,0,0,1]).reshape((1,4))), axis=0)
|
| 533 |
-
|
| 534 |
-
curr_frame["transform_matrix"] = Pc2w.tolist()
|
| 535 |
-
blender_train_json["frames"].append(curr_frame)
|
| 536 |
-
|
| 537 |
-
preset_json[cam_path] = blender_train_json
|
| 538 |
-
|
| 539 |
-
return preset_json
|
| 540 |
-
|
| 541 |
-
|
| 542 |
-
def main():
|
| 543 |
-
cam_path = 'headbanging_circle'
|
| 544 |
-
os.makedirs("poses_supplementary", exist_ok=True)
|
| 545 |
-
|
| 546 |
-
if cam_path == 'lookaround':
|
| 547 |
-
render_poses = generate_seed_lookaround()
|
| 548 |
-
elif cam_path == 'back':
|
| 549 |
-
render_poses = generate_seed_back()
|
| 550 |
-
elif cam_path == '360':
|
| 551 |
-
render_poses = generate_seed_360(360, 360)
|
| 552 |
-
elif cam_path == '1440':
|
| 553 |
-
render_poses = generate_seed_360(360, 1440)
|
| 554 |
-
elif cam_path == 'llff':
|
| 555 |
-
d = 8
|
| 556 |
-
render_poses = generate_seed_llff(5, 400, round=4, d=d)
|
| 557 |
-
elif cam_path == 'headbanging':
|
| 558 |
-
round=3
|
| 559 |
-
render_poses = generate_seed_headbanging_(maxdeg=15, nviews_per_round=180, round=round, fullround=0)
|
| 560 |
-
elif cam_path == 'headbanging_circle':
|
| 561 |
-
round=2
|
| 562 |
-
render_poses = generate_seed_headbanging_circle(maxdeg=5, nviews_per_round=180, round=round, fullround=0)
|
| 563 |
-
|
| 564 |
-
|
| 565 |
-
yz_reverse = np.array([[1,0,0], [0,-1,0], [0,0,-1]])
|
| 566 |
-
|
| 567 |
-
c2w_poses = []
|
| 568 |
-
for render_pose in render_poses:
|
| 569 |
-
### Transform world to pixel
|
| 570 |
-
Rw2i = render_pose[:3,:3]
|
| 571 |
-
Tw2i = render_pose[:3,3:4]
|
| 572 |
-
|
| 573 |
-
# Transfrom cam2 to world + change sign of yz axis
|
| 574 |
-
Ri2w = np.matmul(yz_reverse, Rw2i).T
|
| 575 |
-
Ti2w = -np.matmul(Ri2w, np.matmul(yz_reverse, Tw2i))
|
| 576 |
-
Pc2w = np.concatenate((Ri2w, Ti2w), axis=1)
|
| 577 |
-
# Pc2w = np.concatenate((Pc2w, np.array([[0,0,0,1]])), axis=0)
|
| 578 |
-
|
| 579 |
-
c2w_poses.append(Pc2w)
|
| 580 |
-
|
| 581 |
-
c2w_poses = np.stack(c2w_poses, axis=0)
|
| 582 |
-
|
| 583 |
-
# np.save(f'poses_supplementary/{cam_path}.npy', c2w_poses)
|
| 584 |
-
|
| 585 |
-
FX = 5.8269e+02
|
| 586 |
-
W = 512
|
| 587 |
-
fov_x = 2*np.arctan(W / (2*FX))
|
| 588 |
-
if cam_path in ['360', '1440', 'llff', 'headbanging']:
|
| 589 |
-
fov_x = fov_x * 1.2
|
| 590 |
-
blender_train_json = {}
|
| 591 |
-
blender_train_json["camera_angle_x"] = fov_x
|
| 592 |
-
blender_train_json["frames"] = []
|
| 593 |
-
|
| 594 |
-
for render_pose in render_poses:
|
| 595 |
-
curr_frame = {}
|
| 596 |
-
### Transform world to pixel
|
| 597 |
-
Rw2i = render_pose[:3,:3]
|
| 598 |
-
Tw2i = render_pose[:3,3:4]
|
| 599 |
-
|
| 600 |
-
# Transfrom cam2 to world + change sign of yz axis
|
| 601 |
-
Ri2w = np.matmul(yz_reverse, Rw2i).T
|
| 602 |
-
Ti2w = -np.matmul(Ri2w, np.matmul(yz_reverse, Tw2i))
|
| 603 |
-
Pc2w = np.concatenate((Ri2w, Ti2w), axis=1)
|
| 604 |
-
|
| 605 |
-
curr_frame["transform_matrix"] = Pc2w.tolist()
|
| 606 |
-
(blender_train_json["frames"]).append(curr_frame)
|
| 607 |
-
|
| 608 |
-
import json
|
| 609 |
-
if cam_path=='llff':
|
| 610 |
-
train_json_path = f"poses_supplementary/{cam_path}_d{d}.json"
|
| 611 |
-
elif cam_path=='headbanging':
|
| 612 |
-
train_json_path = f"poses_supplementary/{cam_path}_r{round}.json"
|
| 613 |
-
else:
|
| 614 |
-
train_json_path = f"poses_supplementary/{cam_path}.json"
|
| 615 |
-
|
| 616 |
-
with open(train_json_path, 'w') as outfile:
|
| 617 |
-
json.dump(blender_train_json, outfile, indent=4)
|
| 618 |
-
|
| 619 |
-
|
| 620 |
-
if __name__ == '__main__':
|
| 621 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|