#import library import gradio as gr from roboflow import Roboflow import numpy as np from PIL import Image import requests from io import BytesIO import pandas as pd import os # Initialize Roboflow with your API key rf = Roboflow(api_key="kKDoCn3ABT9AKeFQDCB4") # Function to calculate the area of a polygon using the shoelace formula def calculate_polygon_area(points): n = len(points) area = 0.0 for i in range(n): x1, y1 = points[i] x2, y2 = points[(i + 1) % n] area += (x1 * y2 - x2 * y1) return abs(area) / 2.0 # Function to process Roboflow prediction JSON and calculate corrosion areas def calculate_corrosion_areas(json_data, unit="pixels", conversion_factor=1): corrosion_areas = [] for prediction in json_data["predictions"]: if prediction["class"] == "Corrosion": points = [(point["x"], point["y"]) for point in prediction["points"]] area = calculate_polygon_area(points) if unit == "cm??": area *= conversion_factor # Convert area from pixels to cm?? corrosion_areas.append(area) total_corrosion_area = sum(corrosion_areas) # Prepare output result = { "individual_areas": [f"{area} {unit}" for area in corrosion_areas], "total_area": f"{total_corrosion_area} {unit}", "recommendation": get_inspection_recommendation(total_corrosion_area) } return result # Function to provide inspection recommendation based on total corrosion area def get_inspection_recommendation(total_area): if total_area < 1000: return "No immediate inspection needed." elif total_area < 5000: return "Schedule an inspection in the next 6 months." else: return "Immediate inspection required." # Define a Gradio interface to input a URL, run inference, and calculate corrosion areas def url_infer_and_calculate(url, location, unit="pixels", conversion_factor=1, corrosion_type="", inspection_standards=[], ndt_methods=[], manual_recommendation="", supporting_data=""): try: # Run inference using the Roboflow script rf_project = rf.workspace().project("corrosion-instance-segmentation-sfcpc") model = rf_project.version(3).model prediction = model.predict(url) # Ensure the response is properly formatted as JSON prediction_json = prediction.json() # Calculate corrosion areas from the Roboflow prediction corrosion_areas = calculate_corrosion_areas(prediction_json, unit, float(conversion_factor)) # Download the image from the URL and convert it to a PIL Image response = requests.get(url) img = Image.open(BytesIO(response.content)) # Create a pandas DataFrame for reporting df = pd.DataFrame([{'Number': index+1, 'URL': url, 'Location': location, 'corrosion_areas': corrosion_areas, 'Recommendation': corrosion_areas['recommendation']} for index in range(len(corrosion_areas))]) # Write DataFrame to local CSV file with index included immediately after creating it. df.to_csv('Corrosion_Report.csv', index=False) # Write DataFrame to a string in CSV format csv_string = df.to_csv(index=False) return img, corrosion_areas, prediction_json, csv_string except Exception as e: return {"error": str(e)} # Create a Gradio interface for URL input, inference, and corrosion area calculation iface = gr.Interface( fn=url_infer_and_calculate, inputs=[ gr.inputs.Textbox(label="Enter the URL of an image"), gr.inputs.Textbox(label="Enter the Location"), gr.inputs.Dropdown(choices=["pixels", "cm"], label="Area Unit"), gr.inputs.Textbox(label="Conversion Factor"), gr.inputs.Textbox(label="Enter the Corrosion Type"), gr.inputs.Textbox(label="Inspection Standards"), gr.inputs.CheckboxGroup(choices=["UT thickness", "UT scan", "Phased Array UT", "Short range UT", "Long range UT", "MT", "PT", "Acfm", "Pulse eddy current", "magnetic flux leakage", "positive material identification (PMI)"], label="NDT Inspection Methods"), gr.inputs.Textbox(label="Enter Manual Recommendation"), gr.inputs.Textbox(lines=5, label="Enter Supporting Data URLs (separated by commas)") ], outputs=[ gr.outputs.Image(type="pil"), "json", # JSON output gr.outputs.Textbox(label="CSV Data", type="text"), # CSV data as a plain text gr.outputs.Textbox(label="Corrosion Data"), # Display CSV data as a table ], title="Tim CCG", description="Enter the URL of an image to perform rust detection and calculate corrosion areas.", ) # Launch the Gradio interface iface.launch(debug=False, share=False)