Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import AutoImageProcessor, SiglipForImageClassification
|
| 3 |
+
from PIL import Image
|
| 4 |
+
import torch
|
| 5 |
+
|
| 6 |
+
# 加载 Trash-Net 模型
|
| 7 |
+
model_name = "prithivMLmods/Trash-Net"
|
| 8 |
+
model = SiglipForImageClassification.from_pretrained(model_name)
|
| 9 |
+
processor = AutoImageProcessor.from_pretrained(model_name)
|
| 10 |
+
|
| 11 |
+
# 定义垃圾分类函数
|
| 12 |
+
def trash_classification(image):
|
| 13 |
+
"""输入图片,返回垃圾分类结果"""
|
| 14 |
+
if image is None:
|
| 15 |
+
return {}
|
| 16 |
+
|
| 17 |
+
# 转换图片为 RGB
|
| 18 |
+
image = Image.fromarray(image).convert("RGB")
|
| 19 |
+
|
| 20 |
+
# 转换成模型需要的 tensor
|
| 21 |
+
inputs = processor(images=image, return_tensors="pt")
|
| 22 |
+
|
| 23 |
+
# 模型预测
|
| 24 |
+
with torch.no_grad():
|
| 25 |
+
outputs = model(**inputs)
|
| 26 |
+
logits = outputs.logits
|
| 27 |
+
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
|
| 28 |
+
|
| 29 |
+
# 分类标签
|
| 30 |
+
labels = ["cardboard", "glass", "metal", "paper", "plastic", "trash"]
|
| 31 |
+
|
| 32 |
+
# 返回每个类别的概率
|
| 33 |
+
predictions = {labels[i]: round(probs[i], 3) for i in range(len(probs))}
|
| 34 |
+
return predictions
|
| 35 |
+
|
| 36 |
+
# 创建 Gradio 接口
|
| 37 |
+
iface = gr.Interface(
|
| 38 |
+
fn=trash_classification,
|
| 39 |
+
inputs=gr.Image(type="numpy"),
|
| 40 |
+
outputs=gr.Label(label="Prediction Scores"),
|
| 41 |
+
title="Trash Classification",
|
| 42 |
+
description="Upload an image to classify the type of waste material."
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
# 启动
|
| 46 |
+
if __name__ == "__main__":
|
| 47 |
+
iface.launch()
|