import torch from transformers import AutoProcessor, AutoModelForVision2Seq import gradio as gr from PIL import Image # Load Kosmos-2 Model MODEL_NAME = "microsoft/kosmos-2-patch14-224" processor = AutoProcessor.from_pretrained(MODEL_NAME) model = AutoModelForVision2Seq.from_pretrained(MODEL_NAME) # Ensure model is on GPU if available device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) def analyze_image(image, prompt): """Process an image with a text prompt using Kosmos-2.""" try: image = Image.fromarray(image) # Convert to PIL Image inputs = processor(images=image, text=prompt, return_tensors="pt").to(device) # Generate output output = model.generate(**inputs, max_new_tokens=100) # Allow up to 100 new tokens result_text = processor.batch_decode(output, skip_special_tokens=True)[0] return result_text except Exception as e: return f"Error: {str(e)}" # Gradio Interface iface = gr.Interface( fn=analyze_image, inputs=[gr.Image(type="numpy"), gr.Textbox(label="Prompt")], outputs=gr.Textbox(label="Generated Response"), title="Kosmos-2 Image Reasoning", description="Upload an image and provide a text prompt. Kosmos-2 will generate insights based on the image and text input.", ) # Launch the Gradio app iface.launch()