Spaces:
Sleeping
Sleeping
update
Browse files- app.py +37 -27
- requirements.txt +2 -1
app.py
CHANGED
|
@@ -16,6 +16,15 @@ all_origins = set()
|
|
| 16 |
all_labels = set()
|
| 17 |
dataset_df = None
|
| 18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
def process_image(i):
|
| 21 |
global all_origins
|
|
@@ -61,6 +70,26 @@ else:
|
|
| 61 |
dataset_df.to_pickle("dataset.pkl")
|
| 62 |
|
| 63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
def get_slice(origin, label):
|
| 65 |
global dataset_df
|
| 66 |
|
|
@@ -74,20 +103,11 @@ def get_slice(origin, label):
|
|
| 74 |
|
| 75 |
max_value = len(filtered_df) // 16
|
| 76 |
|
| 77 |
-
returned_values = []
|
| 78 |
-
|
| 79 |
start_index = 0
|
| 80 |
end_index = start_index + 16
|
| 81 |
|
| 82 |
slice_df = filtered_df.iloc[start_index:end_index]
|
| 83 |
-
|
| 84 |
-
for row in slice_df.itertuples():
|
| 85 |
-
returned_values.append(gr.update(value=row.preview))
|
| 86 |
-
returned_values.append(gr.update(value=row.origin))
|
| 87 |
-
returned_values.append(gr.update(value=row.labels))
|
| 88 |
-
|
| 89 |
-
if len(returned_values) < 48:
|
| 90 |
-
returned_values.extend([None] * (48 - len(returned_values)))
|
| 91 |
|
| 92 |
filtered_df = gr.Dataframe(filtered_df, datatype="markdown")
|
| 93 |
return filtered_df, gr.update(maximum=max_value, value=0), *returned_values
|
|
@@ -105,32 +125,22 @@ def make_grid(grid_size):
|
|
| 105 |
with gr.Column():
|
| 106 |
for col_counter in range(grid_size[1]):
|
| 107 |
item_image = gr.Image()
|
| 108 |
-
with gr.Accordion("Click for details", open=False):
|
| 109 |
-
|
| 110 |
-
item_labels = gr.Textbox(label="Labels")
|
| 111 |
|
| 112 |
list_of_components.append(item_image)
|
| 113 |
-
list_of_components.append(item_source)
|
| 114 |
-
list_of_components.append(item_labels)
|
| 115 |
|
| 116 |
return list_of_components
|
| 117 |
|
| 118 |
|
| 119 |
def slider_upadte(slider, df):
|
| 120 |
-
returned_values = []
|
| 121 |
-
|
| 122 |
start_index = (slider) * 16
|
| 123 |
end_index = start_index + 16
|
| 124 |
|
| 125 |
slice_df = df.iloc[start_index:end_index]
|
| 126 |
-
|
| 127 |
-
for row in slice_df.itertuples():
|
| 128 |
-
returned_values.append(gr.update(value=row.preview))
|
| 129 |
-
returned_values.append(gr.update(value=row.origin))
|
| 130 |
-
returned_values.append(gr.update(value=row.labels))
|
| 131 |
-
|
| 132 |
-
if len(returned_values) < 48:
|
| 133 |
-
returned_values.extend([None] * (48 - len(returned_values)))
|
| 134 |
|
| 135 |
return returned_values
|
| 136 |
|
|
@@ -153,12 +163,12 @@ with gr.Blocks() as demo:
|
|
| 153 |
|
| 154 |
with gr.Row():
|
| 155 |
origin_dropdown = gr.Dropdown(all_origins, label="Origin")
|
| 156 |
-
label_dropdown = gr.Dropdown(all_labels, label="
|
| 157 |
with gr.Row():
|
| 158 |
show_btn = gr.Button("Show")
|
| 159 |
reset_filters = gr.Button("Reset Filters")
|
| 160 |
|
| 161 |
-
preview_dataframe = gr.Dataframe(
|
| 162 |
|
| 163 |
gr.Markdown("## Preview")
|
| 164 |
|
|
|
|
| 16 |
all_labels = set()
|
| 17 |
dataset_df = None
|
| 18 |
|
| 19 |
+
beautiful_dataset_names = {
|
| 20 |
+
"imagenet": "ImageNet",
|
| 21 |
+
"imagenet_a": "ImageNet-A",
|
| 22 |
+
"imagenet_r": "ImageNet-R",
|
| 23 |
+
"imagenet_sketch": "ImageNet-Sketch",
|
| 24 |
+
"objectnet": "ObjectNet",
|
| 25 |
+
"imagenet_v2": "ImageNet-V2",
|
| 26 |
+
}
|
| 27 |
+
|
| 28 |
|
| 29 |
def process_image(i):
|
| 30 |
global all_origins
|
|
|
|
| 70 |
dataset_df.to_pickle("dataset.pkl")
|
| 71 |
|
| 72 |
|
| 73 |
+
def get_values_for_the_slice(slice_df):
|
| 74 |
+
returned_values = []
|
| 75 |
+
for row in slice_df.itertuples():
|
| 76 |
+
# returned_values.append(gr.update(value=row.preview))
|
| 77 |
+
labels = ", ".join(row.labels)
|
| 78 |
+
# replace _ with space
|
| 79 |
+
labels = labels.replace("_", " ")
|
| 80 |
+
|
| 81 |
+
dataset_name = beautiful_dataset_names[row.origin]
|
| 82 |
+
|
| 83 |
+
label_string = f"{labels} - ({dataset_name})"
|
| 84 |
+
returned_values.append(gr.update(label=label_string, value=row.preview))
|
| 85 |
+
# returned_values.append(gr.update(value=beautiful_dataset_names[row.origin]))
|
| 86 |
+
|
| 87 |
+
if len(returned_values) < 16:
|
| 88 |
+
returned_values.extend([None] * (16 - len(returned_values)))
|
| 89 |
+
|
| 90 |
+
return returned_values
|
| 91 |
+
|
| 92 |
+
|
| 93 |
def get_slice(origin, label):
|
| 94 |
global dataset_df
|
| 95 |
|
|
|
|
| 103 |
|
| 104 |
max_value = len(filtered_df) // 16
|
| 105 |
|
|
|
|
|
|
|
| 106 |
start_index = 0
|
| 107 |
end_index = start_index + 16
|
| 108 |
|
| 109 |
slice_df = filtered_df.iloc[start_index:end_index]
|
| 110 |
+
returned_values = get_values_for_the_slice(slice_df)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
|
| 112 |
filtered_df = gr.Dataframe(filtered_df, datatype="markdown")
|
| 113 |
return filtered_df, gr.update(maximum=max_value, value=0), *returned_values
|
|
|
|
| 125 |
with gr.Column():
|
| 126 |
for col_counter in range(grid_size[1]):
|
| 127 |
item_image = gr.Image()
|
| 128 |
+
# with gr.Accordion("Click for details", open=False):
|
| 129 |
+
# item_source = gr.Textbox(label="Source Dataset")
|
|
|
|
| 130 |
|
| 131 |
list_of_components.append(item_image)
|
| 132 |
+
# list_of_components.append(item_source)
|
| 133 |
+
# list_of_components.append(item_labels)
|
| 134 |
|
| 135 |
return list_of_components
|
| 136 |
|
| 137 |
|
| 138 |
def slider_upadte(slider, df):
|
|
|
|
|
|
|
| 139 |
start_index = (slider) * 16
|
| 140 |
end_index = start_index + 16
|
| 141 |
|
| 142 |
slice_df = df.iloc[start_index:end_index]
|
| 143 |
+
returned_values = get_values_for_the_slice(slice_df)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
|
| 145 |
return returned_values
|
| 146 |
|
|
|
|
| 163 |
|
| 164 |
with gr.Row():
|
| 165 |
origin_dropdown = gr.Dropdown(all_origins, label="Origin")
|
| 166 |
+
label_dropdown = gr.Dropdown(all_labels, label="Category")
|
| 167 |
with gr.Row():
|
| 168 |
show_btn = gr.Button("Show")
|
| 169 |
reset_filters = gr.Button("Reset Filters")
|
| 170 |
|
| 171 |
+
preview_dataframe = gr.Dataframe(visible=False)
|
| 172 |
|
| 173 |
gr.Markdown("## Preview")
|
| 174 |
|
requirements.txt
CHANGED
|
@@ -2,4 +2,5 @@ transformers
|
|
| 2 |
datasets
|
| 3 |
tqdm
|
| 4 |
numpy
|
| 5 |
-
pandas
|
|
|
|
|
|
| 2 |
datasets
|
| 3 |
tqdm
|
| 4 |
numpy
|
| 5 |
+
pandas
|
| 6 |
+
tqdm
|