Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI
|
2 |
+
from sentence_transformers import SentenceTransformer
|
3 |
+
import pickle
|
4 |
+
import os
|
5 |
+
from pydantic import BaseModel
|
6 |
+
import numpy as np
|
7 |
+
from typing import List
|
8 |
+
|
9 |
+
app = FastAPI(
|
10 |
+
title="SBERT Embedding API",
|
11 |
+
description="API for generating sentence embeddings using SBERT",
|
12 |
+
version="1.0"
|
13 |
+
)
|
14 |
+
|
15 |
+
# Load model (this will be cached after first load)
|
16 |
+
model_name = 'taghyan/model'
|
17 |
+
model = SentenceTransformer(model_name)
|
18 |
+
|
19 |
+
# Embedding cache setup
|
20 |
+
embedding_file = 'embeddings_sbert.pkl'
|
21 |
+
|
22 |
+
class TextRequest(BaseModel):
|
23 |
+
text: str
|
24 |
+
|
25 |
+
class TextsRequest(BaseModel):
|
26 |
+
texts: List[str]
|
27 |
+
|
28 |
+
class EmbeddingResponse(BaseModel):
|
29 |
+
embedding: List[float]
|
30 |
+
|
31 |
+
class EmbeddingsResponse(BaseModel):
|
32 |
+
embeddings: List[List[float]]
|
33 |
+
|
34 |
+
@app.get("/")
|
35 |
+
def read_root():
|
36 |
+
return {"message": "SBERT Embedding Service"}
|
37 |
+
|
38 |
+
@app.post("/embed", response_model=EmbeddingResponse)
|
39 |
+
async def embed_text(request: TextRequest):
|
40 |
+
"""Generate embedding for a single text"""
|
41 |
+
embedding = model.encode(request.text, convert_to_numpy=True).tolist()
|
42 |
+
return {"embedding": embedding}
|
43 |
+
|
44 |
+
@app.post("/embed_batch", response_model=EmbeddingsResponse)
|
45 |
+
async def embed_texts(request: TextsRequest):
|
46 |
+
"""Generate embeddings for multiple texts"""
|
47 |
+
embeddings = model.encode(request.texts, show_progress_bar=True, convert_to_numpy=True).tolist()
|
48 |
+
return {"embeddings": embeddings}
|
49 |
+
|
50 |
+
@app.post("/update_cache")
|
51 |
+
async def update_cache(request: TextsRequest):
|
52 |
+
"""Update the embedding cache with new texts"""
|
53 |
+
if os.path.exists(embedding_file):
|
54 |
+
with open(embedding_file, 'rb') as f:
|
55 |
+
existing_embeddings = pickle.load(f)
|
56 |
+
else:
|
57 |
+
existing_embeddings = []
|
58 |
+
|
59 |
+
new_embeddings = model.encode(request.texts, show_progress_bar=True)
|
60 |
+
updated_embeddings = existing_embeddings + new_embeddings.tolist()
|
61 |
+
|
62 |
+
with open(embedding_file, 'wb') as f:
|
63 |
+
pickle.dump(updated_embeddings, f)
|
64 |
+
|
65 |
+
return {"message": f"Cache updated with {len(request.texts)} new embeddings", "total_embeddings": len(updated_embeddings)}
|