Spaces:
Sleeping
Sleeping
Use distillgpt
Browse files
main.py
CHANGED
@@ -6,49 +6,49 @@ from transformers import pipeline
|
|
6 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
7 |
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
|
14 |
-
#
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
|
20 |
-
|
21 |
|
22 |
|
23 |
-
import transformers
|
24 |
-
import torch
|
25 |
-
import logging
|
26 |
|
27 |
-
model_id = "deepcogito/cogito-v1-preview-llama-3B"
|
28 |
|
29 |
-
pipeline = transformers.pipeline(
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
)
|
35 |
|
36 |
|
37 |
-
print("Pipeline loaded")
|
38 |
-
logging.info("Pipeline loaded")
|
39 |
|
40 |
-
messages = [
|
41 |
-
|
42 |
-
|
43 |
-
]
|
44 |
|
45 |
-
outputs = pipeline(
|
46 |
-
|
47 |
-
|
48 |
-
)
|
49 |
|
50 |
-
logging.info("Generated text")
|
51 |
-
print(outputs[0]["generated_text"][-1])
|
52 |
|
53 |
|
54 |
app = FastAPI()
|
@@ -62,21 +62,27 @@ class Item(BaseModel):
|
|
62 |
|
63 |
@app.post("/generate/")
|
64 |
async def generate_text(item: Item):
|
65 |
-
messages = [
|
66 |
-
|
67 |
-
|
68 |
-
]
|
69 |
|
70 |
-
outputs = pipeline(
|
71 |
-
|
72 |
-
|
73 |
-
)
|
74 |
|
75 |
-
logging.info("request got")
|
76 |
|
77 |
-
resp = outputs[0]["generated_text"][-1]
|
78 |
|
79 |
-
logging.info("Response generated")
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
return {"response": resp}
|
82 |
|
|
|
6 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
7 |
|
8 |
|
9 |
+
Load pre-trained tokenizer and model (Works)
|
10 |
+
model_name = "distilgpt2"
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
12 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
13 |
|
14 |
+
# Example usage: Generate text
|
15 |
+
prompt = "The quick brown fox"
|
16 |
+
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
17 |
+
output = model.generate(input_ids, max_length=50, num_return_sequences=1)
|
18 |
+
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
19 |
|
20 |
+
print(generated_text)
|
21 |
|
22 |
|
23 |
+
# import transformers
|
24 |
+
# import torch
|
25 |
+
# import logging
|
26 |
|
27 |
+
# model_id = "deepcogito/cogito-v1-preview-llama-3B"
|
28 |
|
29 |
+
# pipeline = transformers.pipeline(
|
30 |
+
# "text-generation",
|
31 |
+
# model=model_id,
|
32 |
+
# model_kwargs={"torch_dtype": torch.bfloat16},
|
33 |
+
# device_map="auto",
|
34 |
+
# )
|
35 |
|
36 |
|
37 |
+
# print("Pipeline loaded")
|
38 |
+
# logging.info("Pipeline loaded")
|
39 |
|
40 |
+
# messages = [
|
41 |
+
# {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
|
42 |
+
# {"role": "user", "content": "Give me a short introduction to LLMs."},
|
43 |
+
# ]
|
44 |
|
45 |
+
# outputs = pipeline(
|
46 |
+
# messages,
|
47 |
+
# max_new_tokens=512,
|
48 |
+
# )
|
49 |
|
50 |
+
# logging.info("Generated text")
|
51 |
+
# print(outputs[0]["generated_text"][-1])
|
52 |
|
53 |
|
54 |
app = FastAPI()
|
|
|
62 |
|
63 |
@app.post("/generate/")
|
64 |
async def generate_text(item: Item):
|
65 |
+
# messages = [
|
66 |
+
# {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
|
67 |
+
# {"role": "user", "content": "Give me a short introduction to LLMs."},
|
68 |
+
# ]
|
69 |
|
70 |
+
# outputs = pipeline(
|
71 |
+
# messages,
|
72 |
+
# max_new_tokens=512,
|
73 |
+
# )
|
74 |
|
75 |
+
# logging.info("request got")
|
76 |
|
77 |
+
# resp = outputs[0]["generated_text"][-1]
|
78 |
|
79 |
+
# logging.info("Response generated")
|
80 |
+
|
81 |
+
input_ids = tokenizer.encode(item.prompt, return_tensors="pt")
|
82 |
+
output = model.generate(input_ids, max_length=50, num_return_sequences=1)
|
83 |
+
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
84 |
+
|
85 |
+
resp = generated_text
|
86 |
|
87 |
return {"response": resp}
|
88 |
|