Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
@@ -9,7 +9,12 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
9 |
#Load pre-trained tokenizer and model (Works)
|
10 |
model_name = "gpt2"
|
11 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
12 |
-
model = AutoModelForCausalLM.from_pretrained(
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
# Example usage: Generate text
|
15 |
prompt = "The quick brown fox"
|
@@ -20,37 +25,6 @@ generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
|
20 |
print(generated_text)
|
21 |
|
22 |
|
23 |
-
# import transformers
|
24 |
-
# import torch
|
25 |
-
# import logging
|
26 |
-
|
27 |
-
# model_id = "deepcogito/cogito-v1-preview-llama-3B"
|
28 |
-
|
29 |
-
# pipeline = transformers.pipeline(
|
30 |
-
# "text-generation",
|
31 |
-
# model=model_id,
|
32 |
-
# model_kwargs={"torch_dtype": torch.bfloat16},
|
33 |
-
# device_map="auto",
|
34 |
-
# )
|
35 |
-
|
36 |
-
|
37 |
-
# print("Pipeline loaded")
|
38 |
-
# logging.info("Pipeline loaded")
|
39 |
-
|
40 |
-
# messages = [
|
41 |
-
# {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
|
42 |
-
# {"role": "user", "content": "Give me a short introduction to LLMs."},
|
43 |
-
# ]
|
44 |
-
|
45 |
-
# outputs = pipeline(
|
46 |
-
# messages,
|
47 |
-
# max_new_tokens=512,
|
48 |
-
# )
|
49 |
-
|
50 |
-
# logging.info("Generated text")
|
51 |
-
# print(outputs[0]["generated_text"][-1])
|
52 |
-
|
53 |
-
|
54 |
app = FastAPI()
|
55 |
|
56 |
class EchoMessage(BaseModel):
|
@@ -78,11 +52,22 @@ async def generate_text(item: Item):
|
|
78 |
|
79 |
# logging.info("Response generated")
|
80 |
|
81 |
-
|
82 |
-
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
-
resp = generated_text
|
86 |
|
87 |
return {"response": resp}
|
88 |
|
|
|
9 |
#Load pre-trained tokenizer and model (Works)
|
10 |
model_name = "gpt2"
|
11 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
12 |
+
model = AutoModelForCausalLM.from_pretrained(
|
13 |
+
model_name,
|
14 |
+
device_map="auto",
|
15 |
+
torch_dtype="auto"
|
16 |
+
)
|
17 |
+
|
18 |
|
19 |
# Example usage: Generate text
|
20 |
prompt = "The quick brown fox"
|
|
|
25 |
print(generated_text)
|
26 |
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
app = FastAPI()
|
29 |
|
30 |
class EchoMessage(BaseModel):
|
|
|
52 |
|
53 |
# logging.info("Response generated")
|
54 |
|
55 |
+
inputs = tokenizer(prompt, return_tensors="pt", padding=True, return_attention_mask=True).to(model.device)
|
56 |
+
|
57 |
+
|
58 |
+
# input_ids = tokenizer.encode(item.prompt, return_tensors="pt")
|
59 |
+
# output = model.generate(input_ids, max_length=50, num_return_sequences=1)
|
60 |
+
# generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
61 |
+
# resp = generated_text
|
62 |
+
|
63 |
+
outputs = model.generate(
|
64 |
+
**inputs,
|
65 |
+
max_new_tokens=100,
|
66 |
+
pad_token_id=tokenizer.eos_token_id # Set this to suppress warning
|
67 |
+
)
|
68 |
+
|
69 |
+
resp = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
70 |
|
|
|
71 |
|
72 |
return {"response": resp}
|
73 |
|