File size: 3,846 Bytes
9123d17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf5a555
 
9123d17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b4f3a7
9123d17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import gradio as gr
import openai
import numpy as np
import tensorflow as tf
import keras
from PIL import Image
import requests
import json
from json import JSONEncoder
from datetime import datetime


myControls = {
    "ResultControl":None,
    "Feedback":None,
    "AdditionalInfo":None
}


dataToSend = {
    "FileContent":None,
    "PlantName":None,
    "Comments":None
}

imageData = []

class NumpyEncoder(JSONEncoder):
    def default(self, obj):
        if isinstance(obj, np.ndarray) :
            return obj.tolist()
        return JSONEncoder.default(self,obj)
    


def uploadFile() :
    global dataToSend

    npArray = np.asarray(imageData)
    fileContent = json.dumps(npArray, cls=NumpyEncoder)
    dataToSend["FileContent"] = fileContent

    payload = json.dumps(dataToSend)


    r = requests.post("http://127.0.0.1:5000/todb", data=payload)
    return r

def saveStats(predictionStatus) :
    d = {
        'Time': str(datetime.now()),
        'PredictionStatus':None
    }

    if predictionStatus == 'Satisfied' :
        d['PredictionStatus'] = 1
    else :
        d['PredictionStatus'] = 0

    r = requests.post("http://127.0.0.1:5000/predictionstats", data=json.dumps(d))
    return r

    
def predict(imageToProcess):
    global imageData
    reply = "Nothing to display"
    try :
    
        #openai.api_key = "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"
        openai_key = "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"
        message = "Mango Plant Diseases" 
        if message: 
            messages = []
            messages.append( 
                {"role": "user", "content": message}, 
            ) 
            chat = openai.ChatCompletion.create( 
                model="gpt-3.5-turbo", messages=messages 
            ) 
        
        reply = chat.choices[0].message.content 
    except :
        pass

    imageData = imageToProcess
    print("Image Dimensions", imageData.height, imageData.width)

    return ["No Disease", reply]

def submitFeedback(correctOrWrong, plantName, userData):
    global dataToSend

    print(correctOrWrong)


    if correctOrWrong == "Not Satisfied" :
        dataToSend["PlantName"] = plantName
        dataToSend["Comments"] = userData
        dataToSend["FileContent"] = json.dumps(np.asarray(imageData).tolist())
        r = uploadFile()

        if r != None :
            res = json.loads(r.text)
            gr.Warning("Data Submitted for learning :" + res["Status"])
        else :
            gr.Error("Failed to upload the file for learning")

    saveStats(correctOrWrong)

with gr.Blocks() as app :

    gr.Markdown(
    """
        # AI based plant Disease Detection Application
       
    """
    )
    myControls["ImageInput"] = gr.Image(type="pil")

    controls = []

    myControls["ResultControl"] = gr.Textbox(label='Possible Disease could be ')
    myControls["AdditionalInfo"] = gr.TextArea(label='Additional Info')
    controls.append(myControls["ResultControl"])
    controls.append(myControls["AdditionalInfo"])
    

    predictBtn = gr.Button(value='Predict')
    predictBtn.click(predict, inputs=[myControls["ImageInput"]], outputs=controls)


    gr.Markdown()

    myControls["PredictionSelection"] = gr.Radio(["Satisfied", "Not Satisfied"], label="Feedback", info="Are you satisfied with the prediction?")
    #myControls["Feedback"] = gr.Checkbox(label="Is prediction wrong? If so, please provide the proper classification")
    myControls["PlantName"] = gr.Textbox(label='Specify the name of the plant')
    myControls["UserInput"] = gr.Textbox(label='What is the correct classification?')
    feedbackBtn = gr.Button(value='Submit Feedback')
    feedbackBtn.click(submitFeedback, inputs =[myControls["PredictionSelection"], myControls["PlantName"], myControls["UserInput"]])


    




    app.queue().launch()