Spaces:
Build error
Build error
| import streamlit as st | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| from gtts import gTTS | |
| import tempfile | |
| import os | |
| import speech_recognition as sr | |
| # Set your Hugging Face API key | |
| HUGGING_FACE_API_KEY = "voicebot" | |
| # Load the model and tokenizer | |
| def load_model(): | |
| model_name = "declare-lab/tango-full" | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| model = AutoModelForCausalLM.from_pretrained(model_name, use_auth_token=HUGGING_FACE_API_KEY) | |
| return model, tokenizer | |
| model, tokenizer = load_model() | |
| # Function to get a response from the chatbot | |
| def get_response(input_text): | |
| inputs = tokenizer.encode(input_text, return_tensors='pt') | |
| response_ids = model.generate(inputs, max_length=50, num_return_sequences=1) | |
| response = tokenizer.decode(response_ids[0], skip_special_tokens=True) | |
| return response | |
| # Function to convert text to speech | |
| def text_to_speech(text): | |
| tts = gTTS(text=text, lang='en') | |
| with tempfile.NamedTemporaryFile(delete=True) as fp: | |
| tts.save(f"{fp.name}.mp3") | |
| os.system(f"start {fp.name}.mp3") # Adjust command based on OS | |
| # Speech Recognition Function | |
| def recognize_speech(): | |
| r = sr.Recognizer() | |
| with sr.Microphone() as source: | |
| st.write("Listening...") | |
| audio = r.listen(source) | |
| st.write("Recognizing...") | |
| try: | |
| text = r.recognize_google(audio) | |
| st.success(f"You said: {text}") | |
| return text | |
| except sr.UnknownValueError: | |
| st.error("Sorry, I could not understand the audio.") | |
| return None | |
| except sr.RequestError: | |
| st.error("Could not request results from Google Speech Recognition service.") | |
| return None | |
| # Streamlit Interface | |
| st.title("Voice-to-Text Chatbot") | |
| # Recognize speech | |
| if st.button("Speak"): | |
| user_input = recognize_speech() | |
| else: | |
| user_input = st.text_input("Type your message here:") | |
| # Display response and convert to speech | |
| if user_input: | |
| st.write("You: ", user_input) | |
| chatbot_response = get_response(user_input) | |
| st.write("Chatbot: ", chatbot_response) | |
| text_to_speech(chatbot_response) | |
| text_to_speech(chatbot_response) | |
| import logging | |
| # Configure logging | |
| logging.basicConfig(level=logging.INFO) | |
| # Use logging instead of print for more structured output | |
| def load_model(): | |
| try: | |
| logging.info("Loading model...") | |
| model_name = "declare-lab/tango-full" | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| model = AutoModelForCausalLM.from_pretrained(model_name, use_auth_token=HUGGING_FACE_API_KEY) | |
| logging.info("Model loaded successfully.") | |
| return model, tokenizer | |
| except Exception as e: | |
| logging.error(f"Error loading model: {e}") | |
| raise | |
| # Example usage in your Streamlit code | |
| if __name__ == "__main__": | |
| try: | |
| model, tokenizer = load_model() | |
| except Exception as e: | |
| logging.error(f"Application failed to start: {e}") | |