Spaces:
Build error
Build error
import streamlit as st | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from gtts import gTTS | |
import tempfile | |
import os | |
import speech_recognition as sr | |
# Set your Hugging Face API key | |
HUGGING_FACE_API_KEY = "voicebot" | |
# Load the model and tokenizer | |
def load_model(): | |
model_name = "declare-lab/tango-full" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name, use_auth_token=HUGGING_FACE_API_KEY) | |
return model, tokenizer | |
model, tokenizer = load_model() | |
# Function to get a response from the chatbot | |
def get_response(input_text): | |
inputs = tokenizer.encode(input_text, return_tensors='pt') | |
response_ids = model.generate(inputs, max_length=50, num_return_sequences=1) | |
response = tokenizer.decode(response_ids[0], skip_special_tokens=True) | |
return response | |
# Function to convert text to speech | |
def text_to_speech(text): | |
tts = gTTS(text=text, lang='en') | |
with tempfile.NamedTemporaryFile(delete=True) as fp: | |
tts.save(f"{fp.name}.mp3") | |
os.system(f"start {fp.name}.mp3") # Adjust command based on OS | |
# Speech Recognition Function | |
def recognize_speech(): | |
r = sr.Recognizer() | |
with sr.Microphone() as source: | |
st.write("Listening...") | |
audio = r.listen(source) | |
st.write("Recognizing...") | |
try: | |
text = r.recognize_google(audio) | |
st.success(f"You said: {text}") | |
return text | |
except sr.UnknownValueError: | |
st.error("Sorry, I could not understand the audio.") | |
return None | |
except sr.RequestError: | |
st.error("Could not request results from Google Speech Recognition service.") | |
return None | |
# Streamlit Interface | |
st.title("Voice-to-Text Chatbot") | |
# Recognize speech | |
if st.button("Speak"): | |
user_input = recognize_speech() | |
else: | |
user_input = st.text_input("Type your message here:") | |
# Display response and convert to speech | |
if user_input: | |
st.write("You: ", user_input) | |
chatbot_response = get_response(user_input) | |
st.write("Chatbot: ", chatbot_response) | |
text_to_speech(chatbot_response) | |
text_to_speech(chatbot_response) | |
import logging | |
# Configure logging | |
logging.basicConfig(level=logging.INFO) | |
# Use logging instead of print for more structured output | |
def load_model(): | |
try: | |
logging.info("Loading model...") | |
model_name = "declare-lab/tango-full" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name, use_auth_token=HUGGING_FACE_API_KEY) | |
logging.info("Model loaded successfully.") | |
return model, tokenizer | |
except Exception as e: | |
logging.error(f"Error loading model: {e}") | |
raise | |
# Example usage in your Streamlit code | |
if __name__ == "__main__": | |
try: | |
model, tokenizer = load_model() | |
except Exception as e: | |
logging.error(f"Application failed to start: {e}") | |