Spaces:
Build error
Build error
import os | |
import gradio as gr | |
import torch, torchaudio, importlib, pandas as pd, tempfile, zipfile, pathlib, shutil, numpy as np | |
from types import SimpleNamespace | |
from utmosv2.utils import get_model | |
# ---------------------------------------------------------- | |
# Seadme valik – GPU kui olemas, muidu CPU | |
# ---------------------------------------------------------- | |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
torch.set_grad_enabled(False) # inference - pole backprop’i vaja | |
# Tasuta CPU-Space: 2 vCPU → piirame lõimede arvu | |
if DEVICE.type == "cpu": | |
torch.set_num_threads(min(2, os.cpu_count() or 2)) | |
MAX_LEN = 160_000 # 10 s @16 kHz (kui vaja kiiremaks, vähenda nt 80 000) | |
# ---------------------------------------------------------- | |
# Laeme mudeli korra Space'i käivitumisel | |
# ---------------------------------------------------------- | |
cfg_mod = importlib.import_module("utmosv2.config.fusion_stage3") | |
cfg = SimpleNamespace(**{k: getattr(cfg_mod, k) for k in dir(cfg_mod) if not k.startswith("__")}) | |
cfg.phase, cfg.data_config, cfg.print_config = "test", None, False | |
cfg.weight = "utmosv2_estonian.pth" # ← sinu checkpointi fail | |
model = get_model(cfg, DEVICE).to(DEVICE).eval() | |
specs_cfg = cfg.dataset.specs # mel-vaadete konfiguratsioon | |
# ---------------------------------------------------------- | |
# Abifunktsioonid | |
# ---------------------------------------------------------- | |
def compute_spec(wav: torch.Tensor) -> torch.Tensor: | |
"""Loome mitmevaatelise mel-spectrogrammi [V,3,512,512].""" | |
views = [] | |
for s in specs_cfg: | |
mel = torchaudio.transforms.MelSpectrogram( | |
sample_rate=16_000, | |
n_fft=s.n_fft, | |
hop_length=s.hop_length, | |
win_length=s.win_length, | |
n_mels=s.n_mels | |
).to(DEVICE) | |
db = torchaudio.transforms.AmplitudeToDB()(mel(wav[None]))[0] | |
if db.shape != (512, 512): | |
db = torch.nn.functional.interpolate(db[None, None], | |
size=(512, 512), | |
mode="bilinear", | |
align_corners=False)[0, 0] | |
# kaks “külge” sama spektriga – sama logika nagu originaalmudelis | |
views.extend([db.repeat(3, 1, 1)] * 2) | |
return torch.stack(views) # [V, 3, 512, 512] | |
def single_predict(audio_path, domain, quick): | |
"""Ennusta ühe WAV-i MOS; kui quick=True, kasutab vaid esimest domääni.""" | |
wav, sr = torchaudio.load(audio_path) | |
if sr != 16_000: | |
wav = torchaudio.transforms.Resample(sr, 16_000)(wav)[0] | |
else: | |
wav = wav[0] | |
wav = (wav[:MAX_LEN] if wav.numel() > MAX_LEN | |
else torch.nn.functional.pad(wav, (0, MAX_LEN - wav.numel()))).to(DEVICE) | |
spec = compute_spec(wav) | |
NUM_DOMAINS = 3 # mitu domääni treeningus kasutati | |
preds = [] | |
for dom in range(NUM_DOMAINS): | |
d_oh = torch.nn.functional.one_hot( | |
torch.tensor(dom, device=DEVICE), | |
num_classes=model.num_dataset | |
).float()[None] | |
preds.append(model(wav[None], spec[None], d_oh).item()) | |
if quick: # quick ⇒ ainult esimene domään | |
break | |
return float(np.mean(preds)) | |
def batch_predict(csv_file, wav_zip, num_domains): | |
"""Laeb ZIP-i, arvutab kõikidele CSV-is loetletud failidele MOS-i.""" | |
tdir = tempfile.mkdtemp() | |
with zipfile.ZipFile(wav_zip.name) as zf: | |
zf.extractall(tdir) | |
df = pd.read_csv(csv_file.name) | |
outs = [] | |
quick = True if int(num_domains) == 1 else False | |
for rel in df["audio"]: | |
path = pathlib.Path(tdir) / rel | |
outs.append(single_predict(str(path), "dummy", quick)) | |
df["pred_mos"] = outs | |
out_file = tempfile.NamedTemporaryFile(delete=False, suffix=".csv").name | |
df.to_csv(out_file, index=False) | |
shutil.rmtree(tdir) | |
return df, out_file | |
# ---------------------------------------------------------- | |
# Gradio kasutajaliides | |
# ---------------------------------------------------------- | |
with gr.Blocks(title="UTMOS-v2 MOS-hinnang") as demo: | |
gr.Markdown( | |
""" | |
# UTMOS-v2 (eesti kõne) | |
Ennusta objektiivseid MOS-skoore üksikutele või suurele failihulgale. | |
Mudel laetakse mällu korra Space'i käivitumisel (CPU-s töötab ~ paar s / klipp). | |
""" | |
) | |
# --- üksik WAV --- | |
with gr.Tab("Üksik klipp"): | |
audio = gr.Audio(type="filepath", label="Helifail (16 kHz WAV)") | |
quick = gr.Checkbox(value=True, label="Kiire režiim (1 domään)") | |
out_mos = gr.Number(label="Ennustatud MOS") | |
gr.Button("Hinda").click(fn=lambda a, q: single_predict(a, "default", q), | |
inputs=[audio, quick], | |
outputs=out_mos) | |
# --- partii: CSV + ZIP --- | |
with gr.Tab("Partii (CSV + ZIP)"): | |
csv_in = gr.File(file_types=[".csv"], label="CSV (audio[, MOS, method])") | |
zip_in = gr.File(file_types=[".zip"], label="ZIP kõigi WAV-idega") | |
n_dom = gr.Number(value=3, precision=0, | |
label="Domäänide arv (1 = quick, >1 = täiskeskmistamine)") | |
df_out = gr.Dataframe(label="Tulemused") | |
file_dl = gr.File(label="Lae ennustused CSV-na") | |
gr.Button("Start").click(batch_predict, | |
inputs=[csv_in, zip_in, n_dom], | |
outputs=[df_out, file_dl]) | |
# Queue → võimaldab järjekorda; launch() ilma share-liputa | |
demo.queue(max_size=10).launch() | |